
University of Colorade

Exploring Rural-Urban Differences in Polygenic Associations for Health Among Older Adults in the United States Trent Davidson^{a,b,c}, Jason D. Boardman^{a,b,c}, and Lori M. Hunter^{a,b}

Presented for CUPC Day, November 3, 2021

^a Department of Sociology; ^b Health & Society and Population Programs; ^c Institute for Behavioral Genetics

Acknowledgements

Thank you also to Anni Magyary and Marisa Seitz for their generous administrative and technical support!

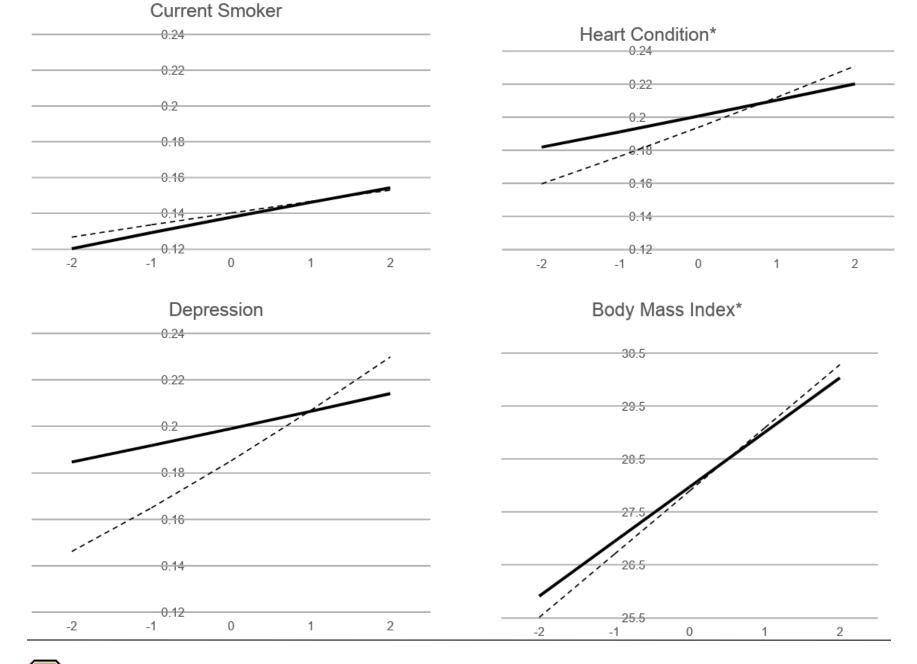
This research has benefited from research, administrative, and computing support provided by the University of Colorado Population Center (Project 2P2CHD066613-06), funded by the Eunice Kennedy Shriver **NICHD**. The content is solely the responsibility of the authors and does not necessarily represent the official views of the University of Colorado, CUPC, or NIH.

Additionally, support for this project was provided by the Interdisciplinary Research Network on Rural Population Health and Aging, which is funded by the National Institute on Aging (grant R24-AG065159).

What's Known: U.S. Rural Health and Health Disparities + Genes

- Poorer health than urban residents¹⁻⁴:
 - Less likely to engage in regular physical activity,
 - more likely to smoke and smoke heavily,
 - less adequate sleep,
 - higher rates of alcohol consumption, and
 - more likely to experience teen pregnancy.
- Recent work utilizes genetic variation to better understand social determinants of health^{5,6}.
- Social research on health has typically focused on explaining "nurture" (i.e., social-behavioral aspects)⁷⁻¹⁰.
- - e.g., increasing heritability of cigarette smoking over time^{11,12}

What Wasn't Known: GxE + Rural Health


- GxE anticipates rural HD may differ due to genetic risk.
- Stress exposure in urban/rural areas may differ substantially¹³.
- To our knowledge, only a handful of studies have applied a GxE approach to understanding rural health (Davis et al. 2017; Legrand et al. 2008; Rose et al. 2001; Taylor et al. 2011)^{14-17.}
- Are rural HD magnified or reduced among those with the highest genetic risk for a specific health problem?

What We Did

- Health and Retirement Study; n = ~15,000 older (i.e., 50+) adults.
- Polygenic scores (PGS)
- Urban-Rural Continuum (USDA Economic Research Service).
- Outcomes: Current Cigarette Smoker, Depression, BMI, and Heart Condition.
- Data contain observations nested within individuals over time—we use GLM and MLM approach (Stata 16).

University of Colorado Boulder

Why We Think This Is Interesting

- Latent genetic risks for heart conditions and obesity are not triggered by rural residence.
- GxE: Genetic information sheds a light on HD.
- RD models highlight the centrality of environmental differences across residential contexts.

What's Next

- We **do not** explicitly focus on the selection into/out of rural areas as a function of age, race, education, or gender.
- PGS effects are attenuated in rural areas, but the strongest version of GxE is not supported here.
- Future directions: USDA Urban-Rural Continuum; Rural Selection.

Table 1. Descriptive Statistics for all Data Used in the Analyses

		0	Deer		Durral		Damma		Orreche	NI
Wave	Age	Sex	Race	Educ	Rural	Heart	Deprx	BMI	Smoke	N
1992	56.174	0.540	0.155	12.690	0.114	0.113		27.057	0.219	4,973
1994	60.875	0.588	0.143	12.615	0.092	0.079	0.143	26.906	0.173	6,343
1996	62.594	0.595	0.141	12.626	0.071	0.167	0.142	27.074	0.162	6,471
1998	63.557	0.584	0.139	12.756	0.060	0.162	0.184	27.334	0.156	8,954
2000	65.304	0.589	0.136	12.774	0.052	0.182	0.184	27.463	0.142	9,115
2002	67.080	0.589	0.138	12.782	0.040	0.219	0.191	27.529	0.130	9,369
2004	66.626	0.580	0.149	12.929	0.025	0.228	0.186	27.710	0.141	11,174
2006	68.425	0.583	0.147	12.935	0.016	0.258	0.199	28.031	0.131	11,439
2008	70.007	0.586	0.148	12.968	0.015	0.278	0.188	28.068	0.123	11,341
2010	67.940	0.579	0.204	13.112	0.013	0.262	0.199	28.399	0.143	13,260
2012	69.172	0.584	0.206	13.163	0.012	0.271	0.204	28.404	0.135	12,650
2014	70.374	0.595	0.209	13.223	0.012	0.285	0.204	28.463	0.121	11,531
2016	71.364	0.599	0.215	13.293	0.021	0.292	0.192	28.509	0.111	10,143
Total	67.021	0.585	0.168	12.957	0.034	0.229	0.189	27.889	0.140	
N										
(Obs)	126,763	126,763	126,763	126,763	126,763	126,699	118,092	125,556	126,123	126,763
N (Ind)	14,994	14,994	14,994	14,994	14,994	14,994	14,992	14,989	14,986	14,994

Table 2. Sample Sizes by Number of Observations

Number of Waves	n (obs)	%.	n (ind)	%
1	151	0.12	151	1.01
2	736	0.58	368	2.45
3	1,692	1.33	564	3.76
4	9,472	7.47	2,368	15.79
5	1,945	1.53	389	2.59
6	3,516	2.77	586	3.91
7	11,914	9.40	1,702	11.35
8	7,376	5.82	922	6.15
9	9,612	7.58	1,068	7.12
10	20,470	16.15	2,047	13.65
11	9,548	7.53	868	5.79
12	13,944	11.00	1,162	7.75
13	36,387	28.70	2,799	18.67
Total	126,763	100.00	14,994	100.00

Results

Table 3. Multilevel Regression Estimates: Polygenic Risk by Rural Residence

	BMI		Heart Condition		Depression		Current Smoker	
	b	pr.<	b	pr.<	b	pr.<	b	pr.<
PGS	1.241	0.000	0.519	0.000	0.231	0.000	0.385	0.000
Rural	-0.160	0.042	0.197	0.095	0.150	0.093	-0.139	0.325
PGS*Rural	-0.185	0.018	-0.244	0.023	-0.153	0.065	0.108	0.461
Age	-0.100	0.000	0.206	0.000	-0.005	0.033	-0.236	0.000
Sex (F)	0.005	0.954	-1.082	0.000	0.708	0.000	-0.611	0.000
Race (B)	1.672	0.000	-0.052	0.731	0.672	0.000	0.993	0.000
Education	-0.138	0.000	-0.236	0.000	-0.230	0.000	-0.565	0.000
N Obs	119,651		125,473		113,250		125,958	
N Ind	14,882		14,895		14,884		14,888	

References

¹ Matthews, Kevin A., Janet B. Croft, Yong Liu, Hua Lu, Dafna Kanny, Anne G. Wheaton, Timothy J. Cunningham, Laura Kettel Khan, Ralph S. Caraballo, James B. Holt, Paul I. Eke, and Wayne H. Giles. 2017. "Health-Related Behaviors by Urban-Rural County Classification — United States, 2013." *MMWR Surveillance Summaries* 66(5):1–8. doi: <u>10.15585/mmwr.ss6605a1</u>.

² Center for Behavioral Health Statistics and Quality. (2020). Results from the 2019 National Survey on Drug Use and Health: Detailed tables. Rockville, MD: Substance Abuse and Mental Health Services Administration. Retrieved from https://www.samhsa.gov/data/

³ U.S. Department of Health and Human Services. <u>The Health Consequences</u> <u>of Smoking—50 Years of Progress: A Report of the Surgeon General</u>. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014.

⁴ Ziller, Erika C., Jennifer Dunbar Lenardson, Nathan C. Paluso, Jean A. Talbot, and Angela Daley. "Rural–urban differences in the decline of adolescent cigarette smoking." *American Journal of Public Health* 109, no. 5 (2019): 771-773

⁵ Kashyap, Meghana V., Michael Nolan, Marc Sprouse, Ranajit Chakraborty, Deanna Cross, Rhonda Roby, and Jamboor K. Vishwanatha. 2015. "Role of Genomics in Eliminating Health Disparities." *Journal of Carcinogenesis* 14. doi: 10.4103/1477-3163.165158

⁵ Barcellos, Silvia H., Leandro S. Carvalho, and Patrick Turley. 2018. "Education Can Reduce Health Disparities Related to Genetic Risk of Obesity: Evidence from a British Reform." *BioRxiv* 260463. doi: 10.1101/260463.

⁷ G.K. Singh, M. Siahpush. Widening rural–urban disparities in all-cause mortality and mortality from major causes of death in the USA, 1969–2009. *Journal of Urban Health*, 91 (2) (2014), pp. 272-292

⁸ Lohaus, Arnold, Marc Vierhaus, and Juliane Ball. 2009. "Parenting Styles and Health-Related Behavior in Childhood and Early Adolescence: Results of a Longitudinal Study." *The Journal of Early Adolescence* 29(4):449–75. doi: 10.1177/0272431608322954.

⁹ Marmot, Michael. 2005. "Social Determinants of Health Inequalities." *Public Health* 365:6.

¹⁰ Marmot, Michael, and Richard Wilkinson. 2005. *Social Determinants of Health*. OUP Oxford.

¹¹ Wedow, Robbee, Meghan Zacher, Brooke M. Huibregtse, Kathleen Mullan Harris, Benjamin W. Domingue, and Jason D. Boardman. 2018. "Education, Smoking, and Cohort Change: Forwarding a Multidimensional Theory of the Environmental Moderation of Genetic Effects." *American Sociological Review* 83(4):802–32. doi: <u>10.1177/0003122418785368</u>.

¹² Boardman, Jason D., Casey L. Blalock, and Fred C. Pampel. 2010. "Trends in the Genetic Influences on Smoking." *Journal of Health and Social Behavior* 51(1):108–23. doi: 10.1177/0022146509361195

¹³ Dobis, Elizabeth A., Heather M. Stephens, Mark Skidmore, and Stephan J. Goetz. 2020. "Explaining the Spatial Variation in American Life Expectancy." *Social Science & Medicine* 246:112759. doi: 10.1016/j.socscimed.2019.112759.

¹⁴ Davis, Christal N., Shanaliz S. Natta, and Wendy S. Slutske. 2017. "Moderation of Genetic Influences on Alcohol Involvement by Rural Residency among Adolescents: Results from the 1962 National Merit Twin Study." *Behavior Genetics* 47(6):587–95. doi: 10.1007/s10519-017-9867-x.

¹⁵ Legrand, Lisa N., Margaret Keyes, Matt McGue, William G. Iacono, and Robert F. Krueger. 2008. "Rural Environments Reduce the Genetic Influence on Adolescent Substance Use and Rule-Breaking Behavior." *Psychological Medicine* 38(9):1341–50. doi: 10.1017/S0033291707001596.

¹⁶ Rose, Richard J., Danielle M. Dick, Richard J. Viken, and Jaakko Kaprio. 2001. "Gene-Environment Interaction in Patterns of Adolescent Drinking: Regional Residency Moderates Longitudinal Influences on Alcohol Use." *Alcoholism: Clinical and Experimental Research* 25(5):637–43. doi: 10.1111/j.1530-0277.2001.tb02261.x.

¹⁷ Taylor, A. E., M. N. Sandeep...G. R. Chandak. 2011. "Associations of FTO and MC4R Variants with Obesity Traits in Indians and the Role of Rural/Urban Environment as a Possible Effect Modifier." *Journal of Obesity* 2011:e307542.

