

Epigenetic aging as a mediator of racial and ethnic inequalities in mortality: results from the National Health and Nutrition Examination Survey, 1999-2002 mortality follow up study

## **Social Epigenetics**

Ē

The process by which life experiences influence the ways our genes are expressed. Persistent and mitotically heritable alterations in genomic information that do NOT involve changes in DNA sequence.



## **Racial and ethnic inequalities and disease risk**



Chronic

Stress

Social

Disadvantage



Dysregulated

**Immune Function** 



## **Epigenetic clocks as a mediator between racial/ethnic inequalities and disease**



## **Epigenetic clocks: First generation**



Jones, Goodman, and Kobor, 2015

## **Epigenetic clocks: Second and third generation**



3rd Gen. Clock Trained using Aging Phenotype and measurements, produces a instantaneous rate of aging



You want your rate of aging to be below one, this means you would have a slowed pace of aging. An average pace of aging would be a rate of 1 biological year for every chronological year aged.

DunedinPoAm is associated with chronic disease morbidity and mortality. Those with a faster pace of aging are at a 56% increased risk of death and a 54% increased risk for diagnosis of a chronic disease.

#### Mortality

Those with faster DunedinPoAm levels, which indicates faster aging, at baseline were at increased risk of death having a hazard ratio of 1.29. Hazard ratio represents an instantaneous risk, it is the relationship between the instantaneous hazards between accelerated DunedinPoAm and mortality.

#### Morbidity

Those with a faster DunedinPoAm baseline were at an increased risk for a new chronic disease, putting them at a hazard ratio of 1.19. Individuals with faster DunedinPoAm experienced higher levels of chronic disease morbidity, which was measured as the count of diagnosed diseases (hypertension, type-2 diabetes, cardiovascular disease, chronic obstructive pulmonary disease, chronic kidney disease, and cancer).

#### Accelerated Aging Influences

Pace of aging typically increases across much of the adult lifespan. A faster DunedinPoAm is the result of a lifetime of accumulated stress to the methylome. Childhood exposure to poverty and victimization is associated with faster DunedinPoAm. Adolescents who grew up in families of lower socioeconomic-status and adolescents with exposure to multiple types of victimization exhibited faster DunedinPoAm.

Bergesma and Rogaeva, 2020

## **NHANES** background

National Health and Nutrition Examination Survey



- This study started in the early 1960s and is led by the National Center for Health Statistics as part of the CDC to assess the health and nutritional status of adults and children in the United States.
- The ~5,000-person sample is drawn from the entire US population allowing results to be more generalizable than previously investigated.
- NHANES has detailed measures related to potential underlying causes of racial/ethnic disparities:
  - Health behaviors
  - Environmental toxicant exposures
  - Social and economic disadvantage
  - 20 years mortality follow-up

# **Study Design**

- Sample size: 2,535
  - 42% non-Hispanic White, 22% non-Hispanic Black, 35% Hispanic
  - Age 50-85
  - From NHANES 1999-2002
- DNA methylation measured using the Illumina Infinium MethylationEPIC BeadChip
- 13 DNAm clocks and biomarkers will be generated
- A Health Disparities Epigenetic Mapping Project website will be developed to allow researchers easy access to findings.
- All DNAm generated will be made public through the CDC Research Data Center



# Health and Retirement Study comparisons with NHANES

| Variable               | NHANES                                                                                    | HRS                                                                                      |
|------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Unique DNAm Biomarkers | Telomere, DunedinPACE                                                                     | Garagnani, Bocklandt                                                                     |
| Sample Size            | 2,535                                                                                     | 4,018                                                                                    |
| Age                    | 50-85 years (Median 67 y)                                                                 | (Median 69 y)                                                                            |
| Race/Ethnicity         | 42% non-Hispanic White, 22% non-<br>Hispanic Black, 35% Hispanic                          | 66% non-Hispanic White, 16% non-<br>Hispanic Black, 14% Hispanic                         |
| Tissue Type Measured   | Venous blood                                                                              | Venous blood                                                                             |
| Sex                    | 49% Female                                                                                | 56% Female                                                                               |
| Education              | <high (22%),<br="" (47%),="" high="" school="">Some College (18%), College + (14%)</high> | <high (17%),="" (52%),<br="" high="" school="">Some College (6%), College + (24%)</high> |

# Health and Retirement Study comparisons with NHANES

| Similarities                          | Differences                                                     |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Nationally representative             | NHANES cross-sectional; HRS longitudinal                        |  |  |  |  |
| Multidisciplinary content             | NHANES more CV, lifestyle screens, and family history           |  |  |  |  |
| Rapid public data release             | NHANES reports on medications and mental health                 |  |  |  |  |
| National research data resource       | HRS performs cancer screens                                     |  |  |  |  |
| Relies on self-reporting              | HRS reports on vaccinations                                     |  |  |  |  |
| Oversample for minorities             | HRS provides more economic details                              |  |  |  |  |
| Similar sampling sizes (6,000-10,000) | NHANES utilizes Medicare/Medicaid claims; HRS Veterans' Affairs |  |  |  |  |
| Perform physical examinations         | HRS has birthdates                                              |  |  |  |  |

# **NHANES** project to date

| Clock       | Group/Publication    | Platform       | Probe<br>Number | Units            | Train n | Test n           | Age Range   | Race                                                                    | Tissue                                                                             | Normalization                         | Error            | Purpose                                                                                                                                                  |
|-------------|----------------------|----------------|-----------------|------------------|---------|------------------|-------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Horvath     | Horvath              | 27K &<br>450K  | 353             | Years            | 3,900   | 3,200            | 0-100       | Unknown - 26%, White = 93%,<br>Black = 3%, Asian = 1%,<br>Hispanic = 3% | Pan Tissue (51 types)                                                              | Horvath's BMIQ                        | MAD = 3.6 years  | Predict chronological age across tissues and a large age range                                                                                           |
| Hannum      | Hannum/Zhang         | 450K           | 71              | Years            | 482     | 174              | 19-101      | White = 65%, Hispanic = 35%                                             | Blood                                                                              | Horvath's BMIQ                        | 4.9 years        | Predict chronological age.                                                                                                                               |
| PhenoAge    | Liu/Levine           | 450K           | 513             | Years            | 9,926   | 6,209            | 20-100      | non-Hispanic African American<br>& White                                | Blood                                                                              | Horvath's BMIQ (multiple to test)     | -                | Predict phenotypic age which is a combination of chronological age and 9<br>mutli-system clinical chemistry biomarkers. Mortality risk.                  |
| BloodSkin   | Horvath/Raj          | 450K &<br>EPIC | 391             | Years            | 896     | 1,326            | 0-94        | White, Indigenous, African<br>American, Hispanic                        | Fibroblasts, keratinocytes,<br>BECs, endothelial,<br>lymphoblastoid, blood, saliva | Horvath's BMIQ                        | 3.4 years        | Predict chronological age in fibroblasts and cell types used in ex vivo studies.                                                                         |
| Lin         | Lin/Wagner           | 27K            | 99              | Years            | 575     | 2,100            | 19-101      | White                                                                   | Blood                                                                              | Background Subtracted                 | 5 years          | Predicts mortality risk.                                                                                                                                 |
| Weidner     | Weidner/Wagner       | 450K           | 3               | Years            | 446     |                  | 79          | White                                                                   | Blood                                                                              | Background Subtracted                 | 9-11 years       | Predict chronological age.                                                                                                                               |
| Vidal-Bralo | Vidal-Bralo/Gonzalez | 27K &<br>450K  | 8               | Years            | 390     | 335, 92 &<br>557 | 20-89       | White                                                                   | Whole Blood                                                                        | None?                                 | MAD = 6.07 years | Predicts chronological age. Limited to sites that can be measured on MS-<br>SNuPE                                                                        |
| Yang        | Teschendorff/Yang    | 450K           | 385             | Beta level       | 650     | 300              | 70          | White = 65%, Hispanic = 35%                                             | Fetal tissue, 12 tissue types,<br>assessed in blood                                | BMIQ                                  | -                | Mitotic-like clock trained in normal and cancer tissues predicting stem cell<br>division by restricting to promoter CpGs in Polycomb group target genes. |
| Zhang       | Visscher/Zhang       | 450K &<br>EPIC | 514             | Years            | 13,661  | -                | 2-104       | White                                                                   | Blood and Saliva (n = 260)                                                         | z-score                               | -                | Building a more predictive epigenetic clock                                                                                                              |
| GrimAge     | Lu/Horvath           | 450K           | -               | Years            | 1,731   | 625              | mean age 66 | White                                                                   | Blood                                                                              | Horvath's BMIQ (but also<br>mixed)    |                  | A composite biomarker based on 7 DNAm surrogates and smoking packing<br>years to predict lifespan                                                        |
| ounedinPoAm | Belsky/Moffitt       | 450K &<br>EPIC | 173 &<br>46     | Rate of<br>Aging | 810     | -                | 26-38       | White                                                                   | Blood                                                                              | Any normalization method              | NA               | Predicts the rate of change of 18 organ-system integrity indicators from<br>ages 26, 32,38 years.                                                        |
| DunedinPACE | Belsky/Moffitt       | EPIC           | 173             | Rate of<br>Aging | 818     | -                | 26-45       | White                                                                   | Blood                                                                              | Any normalization method              | NA               | Predicts the rate of change of 19 blood biomarkers from ages 26, 32,38 and 45 years.                                                                     |
| Telomere    | Horvath/Lu           | 450K &<br>EPIC | 140             | Kilobases        | 2,256   | 9,345            | 22-93       | 40% European, 60% African.                                              | Blood                                                                              | Mixed; GS, noob, BMIQ,<br>watermelon. | -                | To predict telomere length, trained on LTL (leukocyte telomere length)<br>measured by southern blot terminal restriction fragments (TRFs).               |
|             |                      |                |                 |                  |         |                  |             |                                                                         |                                                                                    |                                       |                  |                                                                                                                                                          |

- Epigenetic clocks and biomarkers have been produced accessing the data for analysis in the secured CDC facilities is the final hurdle.
- Basic pre-processing, cell proportions and sex predictions completed.
- Data to be released soon.

## Adjusting for age in the model

- They state that some variables are associated with age and so age should be adjusted for in the model.
- They calculate EAA in the same way:
  - Epigenetic Age Acceleration (EAA) = residuals(DNAmAge ~ Age)
- They recommend one of two models:
  - EAA ~ Variable + Age
  - DNAmAge ~ Variable + Age

Practice of Epidemiology

Use of Correct and Incorrect Methods of Accounting for Age in Studies of Epigenetic Accelerated Aging: Implications and Recommendations for Best Practices

Nancy Krieger\*, Jarvis T. Chen, Christian Testa, Ana Diez Roux, Kate Tilling, Sarah Watkins, Andrew J. Simpkin, Matthew Suderman, George Davey Smith, Immaculata De Vivo, Pamela D. Waterman, and Caroline Relton

\* Correspondence to Dr. Nancy Krieger, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Kresge 717, Boston, MA 02115 (e-mail: nkrieger@hsph.harvard.edu).

## Accounting for non-linear effects of age

EPIGENETICS 2019, VOL. 14, NO. 9, 912-926 https://doi.org/10.1080/15592294.2019.1623634



RESEARCH PAPER



#### Age-related epigenetic alterations Aged epigenetic landscape ↓ oxphos, NAD+, Sirt activity increased ↑ acetyl-CoA histone acetylation altered DNA methylation ↓ pyruvate dehydrogenase decreased ↓ acetyl-CoA synthase histone acetylation 1 double-strand breaks interrupted maintenance of epigenetic landscape locus-specific global ↓ stability of PRCs de novo methylation by DNMT3A and DNMT3B ↓ DNMTs decreased methylation maintenance altered histone modifications decrease of repressive histone marks Youthful epigenetic landscape

hypermethylation hypomethylation

increase of activating histone marks (e.g. H3K4me3, H3K36me3, H4K16ac, H4K12ac)

(e.g. H3K9me3, H3K27me3, H4K20me2, H3K56ac)



global reduction in heterochromatin

#### Human epigenetic ageing is logarithmic with time across the entire lifespan

Sagi Snir<sup>a</sup>, Colin Farrell<sup>b</sup>, and Matteo Pellegrini<sup>b</sup>

<sup>a</sup>Department of Evolutionary Biology, University of Haifa, Haifa, Israel; <sup>b</sup>Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA

> Calculating epigenetic age acceleration to account for non-linearity:

 $EAA2 = residuals(DNAmAge ~ Age + Age^2)$ 

### Two model suggestions:

- 1. EAA2 ~ Variable + Age + Age<sup>2</sup>
- 2.  $DNAmAge \sim Variable + Age + Age^2$

# Including cell type proportions (CTPs)

Horvath calculator acknowledges cell types with following measures:

- EEAA = residuals(DNAmAge ~ Age)
- IEAA = residuals(DNAmAge ~ Age + CTPs)

Three model suggestions (all produce same results):

- 1. IEAA ~ Variable + Age + Age<sup>2</sup> + CTPs
- 2. EEAA ~ Variable + Age + Age<sup>2</sup> + CTPs
- 3. DNAmAge ~ Variable + Age + Age<sup>2</sup> + CTPs

Priority Research Paper Volume 8, Issue 9 pp 1844-1865



## DNA methylation-based measures of biological age: meta-analysis predicting time to death

Brian H. Chen<sup>1,2,3</sup>, Riccardo E. Marioni<sup>4,5,6</sup>, Elena Colicino<sup>7</sup>, Marjolein J. Peters<sup>8</sup>, Cavin K. Ward-Caviness<sup>9</sup>, Pei-Chien Tsai<sup>10</sup>, Nicholas S. Roetker<sup>11</sup>, Allan C. Just<sup>7</sup>, Ellen W. Demerath<sup>11</sup>, Weihua Guan<sup>12</sup>, Jan Bressler<sup>13</sup>, Myriam Fornage<sup>13,14</sup>, Stephanie Studenski<sup>1</sup>, Amy R. Vandiver<sup>15</sup>, Ann Zenobia Moore<sup>1</sup>, Toshiko Tanaka<sup>1</sup>, Douglas P. Kiel<sup>16,17</sup>, Liming Liang<sup>18,19</sup>, Pantel Vokonas<sup>18</sup>, Joel Schwartz<sup>18</sup>, Kathryn L. Lunetta<sup>2,20</sup>, Joanne M. Murabito<sup>2,21</sup>, Stefania Bandinelli<sup>22</sup>, Dena G. Hernandez<sup>23</sup>, David Melzer<sup>24</sup>, Michael Nalls<sup>23</sup>, Luke C. Pilling<sup>24</sup>, Timothy R. Price<sup>23</sup>, Andrew B. Singleton<sup>23</sup>, Christian Gieger<sup>9,25</sup>, Rolf Holle<sup>26</sup>, Anja Kretschmer<sup>9,25</sup>, Florian Kronenberg<sup>27</sup>, Sonja Kunze<sup>9,25</sup>, Jakob Linseisen<sup>9</sup>, Christine Meisinger<sup>9</sup>, Wolfgang Rathmann<sup>28</sup>, Melanie Waldenberger<sup>9,25</sup>, Peter M. Visscher<sup>4,6,29</sup>, Sonia Shah<sup>6,29</sup>, Naomi R. Wray<sup>6</sup>, Allan F. McRae<sup>6,29</sup>, Oscar H. Franco<sup>30</sup>, Albert Hofman<sup>18,30</sup>, André G. Uitterlinden<sup>8,30</sup>, Devin Absher<sup>31</sup>, Themistocles Assimes<sup>32</sup>, Morgan E. Levine<sup>33</sup>, Ake T. Lu<sup>33</sup>, Philip S. Tsao<sup>32,34</sup>, Lifang Hou<sup>35,36</sup>, JoAnn E. Manson<sup>37</sup>, Cara L. Carty<sup>38</sup>, Andrea Z. LaCroix<sup>39</sup>, Alexander P. Reiner<sup>40,41</sup>, Tim D. Spector<sup>10</sup>, Andrew P. Feinberg<sup>15,42</sup>, Daniel Levy<sup>2,43</sup>, Andrea Baccarelli<sup>7,44</sup>, Joyce van Meurs<sup>8</sup>, Jordana T. Bell<sup>10</sup>, Annette Peters<sup>9</sup>, Ian J. Deary<sup>4,45</sup>, James S. Pankow<sup>11</sup>, Luigi Ferrucci<sup>1</sup>, Steve Horvath<sup>33,45</sup>

## **Modelling cell type proportions**

### Assumptions for linear regression:

- Linear relationship Likely met
- Multivariate Normality Likely met
- Homoscedasticity Likely met
- No or little multicollinearity Problematic





# Modelling cell type proportions

### Proposed solutions so far:

- 1. Raw solves neither issue
- 2. Regress out cell type prior to running model removes variation instead of accounting for it
- 3. Remove cell types until correlated below threshold some variation left unadjusted, how to pick
- 4. PCs-1 from PCA of CTPs solves correlation only as returns compositional data almost unchanged
- 5. PCs-1 from PCA on isometric log ratio transformed CTPs solves both issues but not as interpretable
- 6. Constrained (log-contrast) linear regression with no intercept with raw CTPs solves both issues but not as interpretable

## Acknowledgments



![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

## David Rehkopf, ScD

Belinda Needham, PhD

Yongmei Liu, MD, PhD

Hanyang Shen, MPH

Kurt Lohman