Epigenetic aging as a mediator of racial and ethnic
inequalities in mortality: results from the National Health
and Nutrition Examination Survey, 1999-2002 mortality
follow up study




Social Epigenetics

The process by which life experiences influence the ways our genes are expressed.
Persistent and mitotically heritable alterations in genomic information that do
NOT involve changes in DNA sequence.
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Presentation Notes
The theory behind social epigenetics is that experiences can affect various biological pathways which can in turn influence epigenetic pathways (such as DNA methylation) which can influence how our genes are expressed and subsequently influence various biological pathways in response.


Racial and ethnic inequalities and disease risk
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Presentation Notes
Cardiovascular deaths are 30% in African-Americans than non-Hispanic whites
CV accounts for 1/3 of the overall disparity in potential life in years lost between these groups
While statistics like this are well known, the biological mechanisms underlying these relationships are not
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The field has recently started investigating the role of epigenetic mechanisms at play, predominantly DNA methylation in the context of population studies. 


Epigenetic clocks: First generation
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These are predictors where DNA methylation was trained to predict chronological age. Output is age. Beyond being a predictor of chronological age the deviation from this linear relationship, termed epigenetic age acceleration, has been linked to various health outcomes. The EAA measure is simply the residuals of this linear relationship, or epigenetic age controlled for chronological age.

Image: Jones MJ, Goodman SJ, Kobor MSK. DNA methylation and human aging. 2015. Aging Cell

Image 2: Declerck K, Vanden Berghe W. Back to the future: Epigenetic plasticity towards healthy aging. 2018. mechanisms of Ageing and Development.



1st Gen. Clock
Trained using Chronological Age
Age ~ CpG Methylation + Age + Sex
* .
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Trained using Aging Phenotypes
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%pigenetic clocks: Second and third generation
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These are predictors where DNA methylation was trained to predict other biological measures such as frailty, smoking, inflammatory biomarkers, etc. The out put is a measure in age sometimes but others it can be rates such as with the Duendin

Image: Bergsma T, Rogaeva E. DNA methylation clocks and their predictive capacity for aging pehnotypes and healthspan. 2020. Neuroscience Insights.



NHANES background

(ﬁhanes National Health and Nutrition Examination Survey
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* This study started in the early 1960s and is led by the National Center for Health Statistics as part
of the CDC to assess the health and nutritional status of adults and children in the United States.

* The ~5,000-person sample is drawn from the entire US population allowing results to be more
generalizable than previously investigated.

* NHANES has detailed measures related to potential underlying causes of racial/ethnic disparities:
* Health behaviors
* Environmental toxicant exposures
e Social and economic disadvantage

e 20 years mortality follow-up



Study Design

Sample size: 2,535
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“Health and Retirement Study
comparisons with NHANES

R L

Unique DNAm Biomarkers Telomere, DunedinPACE

Sample Size 2,535

Age 50-85 years (Median 67 y)

Race/Ethnicity 42% non-Hispanic White, 22% non-
Hispanic Black, 35% Hispanic

Tissue Type Measured Venous blood

Sex 49% Female

Education <High School (47%), High School (22%),

Some College (18%), College + (14%)

Garagnani, Bocklandt
4,018
(Median 69 vy)

66% non-Hispanic White, 16% non-
Hispanic Black, 14% Hispanic

Venous blood
56% Female

<High School (17%), High School (52%),
Some College (6%), College + (24%)
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Based on this: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012018/

HRS measured Garagnani (sequenome epityper regions), Bocklandt (measured in saliva so not appropriate).
NHANES measured telomere (not really a clock but related to age), DunedinPACE (newer added another age).


“Health and Retirement Study
comparisons with NHANES

Smartes oiferences

Nationally representative NHANES cross-sectional; HRS longitudinal
Multidisciplinary content NHANES more CV, lifestyle screens, and family history
Rapid public data release NHANES reports on medications and mental health
National research data resource HRS performs cancer screens

Relies on self-reporting HRS reports on vaccinations

Oversample for minorities HRS provides more economic details

Similar sampling sizes (6,000-10,000) NHANES utilizes Medicare/Medicaid claims; HRS Veterans’ Affairs

Perform physical examinations HRS has birthdates
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Based on this: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012018/
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NHANES project to date
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* Epigenetic clocks and biomarkers have been produced — accessing the data for analysis in the
secured CDC facilities is the final hurdle.

* Basic pre-processing, cell proportions and sex predictions completed.

e Data to be released soon.
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Discuss briefly the clocks which have been measured – then state there are some overarching questions about analysis up for discussion.


Adjusting for age in the model

* They state that some variables are associated with age and so age should be adjusted for in the model.

* They calculate EAA in the same way:
* Epigenetic Age Acceleration (EAA) = residuals(DNAmAge ~ Age)

* They recommend one of two models:
e EAA ~ Variable + Age Practice of Epidemiology
* DNAmAge ~ Variable + Age

Use of Correct and Incorrect Methods of Accounting for Age in Studies of
Epigenetic Accelerated Aging: Implications and Recommendations for
Best Practices

Nancy Krieger*, Jarvis T. Chen, Christian Testa, Ana Diez Roux, Kate Tilling, Sarah Watkins,
Andrew J. Simpkin, Matthew Suderman, George Davey Smith, Inmaculata De Vivo,
Pamela D. Waterman, and Caroline Relton

* Correspondence to Dr. Nancy Krieger, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public
Health, 677 Huntington Avenue, Kresge 717, Boston, MA 02115 {e-mail: nkrieger@ hsph.harvard.edu).



@Accounting for non-linear effects of age

Age-related epigenetic alterations

I Aged epigenetic landscape
! oxphos, NAD+, Sirt activity
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Human epigenetic ageing is logarithmic with time across the entire lifespan

Sagi Snir®, Colin Farrell’, and Matteo Pellegrini®

"Department of Evolutionary Biology, University of Haifa, Haifa, Israel; "Department of Molecular, Cell and Developmental Biclogy, University
of California, Los Angeles, CA, USA

Calculating epigenetic age acceleration to
account for non-linearity:
* EAA2 =residuals(DNAmMAge ~ Age + Age?)

Two model suggestions:
1. EAA2 ~ Variable + Age + Age?
2. DNAmAge ~ Variable + Age + Age?
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The relationship between many of these epigenetic age measures and chronological age is not linear but logistic There tends to be shifting at the extremes of age. How should the field account for this?  

Should we stratify by age and use different clocks?

Should we pick one clock and change the model?

Image: https://www.tandfonline.com/doi/pdf/10.1080/15592294.2019.1623634

Paper: https://www.tandfonline.com/doi/pdf/10.1080/15592294.2019.1623634 


B
Including cell type proportions (CTPs)

Horvath calculator acknowledges cell types with following measures:
* EEAA =residuals(DNAmMAge ~ Age)
* |EAA =residuals(DNAmMAge ~ Age + CTPs)

Three model suggestions (all produce same results):

1. IEAA ~ Variable + Age + Age? + CTPs

2. EEAA ~ Variable + Age + AgeZ + CTPS Priority Research Paper | Volume 8, Issue9  pp 1844—1865
3. DNAmAge ~ \ariable + Age + Agez + CTPs C DNA methylation-based measures of biological age: meta-analysis

*’ " predicting time to death

Brian H. Chen'23, Riccardo E. Marioni*®€ , Elena Colicino” , Marjolein J. Peters®, Cavin K. Ward-Caviness?, Pei-Chien Tsai'®,
Nicholas S. Roetker!" , Allan C. Just” , Ellen W. Demerath'! , Weihua Guan'2, Jan Bressler'® , Myriam Fornage!®14,
Stephanie Studenski', Amy R. Vandiver'S , Ann Zenobia Moore! , Toshiko Tanaka' , Douglas P. Kiel'®17 | Liming Liang
Pantel Vokonas'®, Joel Schwartz'® , Kathryn L. Lunetta®2? , Joanne M. Murabito?2' , Stefania Bandinelli2?,

Dena G. Hernandez?? , David Melzer?? , Michael Nalls2? , Luke C. Pilling2* , Timothy R. Price?® , Andrew B. Singleton??,
Christian Gieger®25, Rolf Holle2®, Anja Kretschmer®25 , Florian Kronenberg?” , Sonja Kunze®?2%, Jakob Linseisen?,

Christine Meisinger® , Wolfgang Rathmann2® | Melanie Waldenberger®2% , Peter M. Visscher*®2? | Sonia Shah®29

Naomi R. Wray® , Allan F. McRae®2% , Oscar H. Franco®, Albert Hofman'83% | André G. Uitterlinden®3° | Devin Absher®' ,
Themistocles Assimes®2, Morgan E. Levine®? | Ake T. Lu®?®, Philip S. Tsao®23* | Lifang Hou®%¢ | JoAnn E. Manson®7 ,
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Luigi Ferrucei', Steve Horvath33:43
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Article: https://www.aging-us.com/article/101020/text

Discuss intrinsic and extrinsic age acceleration (just whether you adjusted for cell type or not)


Modelling cell type proportions

Assumptions for linear regression:

e Linear relationship — Likely met
 Multivariate Normality — Likely met
 Homoscedasticity — Likely met

* No or little multicollinearity — Problematic
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S
Modelling cell type proportions

Proposed solutions so far:

AL S o A

Raw — solves neither issue

Regress out cell type prior to running model — removes variation instead of accounting for it
Remove cell types until correlated below threshold — some variation left unadjusted, how to pick
PCs-1 from PCA of CTPs — solves correlation only as returns compositional data almost unchanged
PCs-1 from PCA on isometric log ratio transformed CTPs — solves both issues but not as interpretable

Constrained (log-contrast) linear regression with no intercept with raw CTPs — solves both issues but
not as interpretable
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5. PCA of the orthonormal relative structure of the proportions instead of the values of their original components to create linearly uncorrelated variables 
- Uses the principles of compositional data to maintain relative distances among the components
     - Robust PCA for Compositional Data: 
- Minimum Covariance Determinant (MCD) estimators of location and covariance inquire ILR coordinates to obtain full rank data in order to get the MCD estimate of the covariance matrix and the respective matrix of eigenvectors
	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.1787&rep=rep1&type=pdf
	- propose an isometric logratio transformation (ilr) of the data prior to performing PCA.

	z ∗ I = pca scores
	G = a matrix of eigenvectors
	Zi = ILR coordinates as the input 
	t = the location estimator (It is common to take t as the arithmetic mean and it is very sensitive to outliers, which is why a robust MCD estimator is used) 

6. Commonly used in microbiome data for microbial relative abundances
	- Similar to the standard linear model with the important difference that there are linear equality constraints on the regression vector
	- No intercept is included in the model, since it can be eliminated by centering the response and predictor variables
	- This model describes the outcome as a linear combination of log-ratios of the original compositional proportions
	- Log-contrast regression model coefﬁcients are interpreted differently than the standard linear model:
	-Combined log-ratio coefﬁcients relate the response to log-fold changes of the corresponding component ratios	.
		- For modelling experiments with compositional data acting as a covariate
 	- This model describes the response as a linear combination of log-ratios of the original compositions
	- where Z = (z1,...,z p) = (log xi j) is the n × p design matrix and β∗ = (β∗ 1 ,...,β∗ p)T is the p-vector of regression coefficients.
	- y = Z pβ∗ \p + ε, (1) where Z p = {log(xi j /xi p)} is the n × (p − 1) log-ratio matrix whose pth component is the reference component, β∗ \p = (β∗ 1 ,...,β∗ p−1)T is the corresponding (p − 1)-vector of regression 	coefficients, and ε is an n-vector of independent noise distributed as N(0, σ2).
	- Suppose that we observe an n-vector y of responses and an n × p matrix X = (xi j) of covariates, with each row of X lying in the (p − 1)-dimensional positive simplex S p−1 = {(x1,..., x p) : x j > 0 (j = 1,..., p), p 	j=1 x j = 1}. Because of the unit-sum constraint, the p components of a composition cannot vary freely
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