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The Presenters



• Associate Research Scientist

• Environmental and Reproductive Epidemiologist
• Maternal health and children’s neurodevelopment

• Molecular markers (DNAm, miRNA, metabolomics, mitochondrial) of reproduction and 
aging

• Big fan of the exposome
• Reluctant fan of Canadian Rugby

• Emerging environmental pollutants and epigenetic 
biomarkers

Dr. Haotian (Howie) Wu



• Assistant Professor

• Environmental toxicologist and epidemiologist
• Children’s Metabolic Development

• Development of omics biomarkers for 
environmental health studies
• Mitochondria

• miRNAs

• DNA methylation

• New epigenetic markers

Dr. Allison Kupsco



Today’s Training is a Condensed Version of a Condensed 
Workshop

• Hope to cover the basics

• Please feel free to reach out to us or talk to us after 

Other Courses Offered:

• Microbiome, multi-omics, single cell seq, quantitative genomics, machine 
learning, exposome, mendelian randomization, and more!

SHARP Trainings



• At least basic R experience

• Little to no experience processing DNAm array data

• Little to no experience with DNAm-wide modeling and 
subsequent applications (e.g. pathway or gene ontology)

• Interest in using DNAm data (and know what it is)

• Reminder – if you haven’t, please start installing the 
packages (see our Rscripts)

Target Audience



• Ability to 
• Process raw Illumina array data (code for 2 common pipelines)

• Conduct common epigenome wide analyses

• Conduct basic diagnostics of those models

• Apply basic pathway analyses 

• Adapt the processed data for other downstream applications 
(e.g. methylation clocks)

• Understand the common challenges and decisions making 
processes 

Content and Goals
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Introduction



• Genomic CpGs are most 
frequently studied
• Do occur on other bases

• Occurs on mitochondrial DNA as 
well

• Evolution of Technology
• Global DNAm

• Candidate Gene DNAm

• -omic level assays
• Arrays

• Sequencing

DNA Methylation



Both screen for thousands to millions of loci:
̶ GWAS: Single nucleotide polymorphisms (SNPs)

̶ EWAS: CpG* sites

The EWAS/epigenetics field is relatively new

• Most methods are borrowed from genomics

Genetics and Epigenetics



• Genetics less susceptible to confounding and reverse 
causation
• DNAm is (for example, by genetics!)

• Mendelian Randomization works. DNAm randomization does 
not.

• Changes over time
• GWAS: SNPs (almost) never change

• EWAS: epigenetic marks change over time

• Not just DNAm, but also histones, ncRNAs, etc.

Differences



• Type of Data

• GWAS: SNP has fixed values

• 0 (wt/wt); 1 (wt/var); 2 (var/var)

• EWAS: measures are quantitative

• Average % methylation

• % cell with methylation

• Epigenetic data can be both the independent and dependent 
variable

• Implications for interpretation
• Common question: what is a “meaningful effect size”?

Differences



• GWAS: SNPs are not tissue specific

• EWAS: epigenetic marks are tissue specific

• Need to be very cautious transporting results from 
commonly used biomatrices (e.g. blood, saliva) to actual 
targets of interest

• Will address later

Tissue Specificity



• Arrays vs. WGBS Sequencing

• Arrays (particularly 450K and EPIC) have emerged as the 
standard for most large studies
• Limited in information + potential for discovery (<1mil sites)

• Better reproducibility

• Consistent information*  VERY useful feature

• Lower cost

Platforms



450K vs. EPIC
Coverage of the EPIC Array (below)

450K vs. 850K/EPIC (right)

Source: Moran, Sebastian, 
Carles Arribas, and Manel 
Esteller. "Validation of a DNA 
methylation microarray for 
850,000 CpG sites of the human 
genome enriched in enhancer 
sequences." Epigenomics 8.3 
(2016): 389-399.



Quick Cost Breakdown

Pyrosequencing <10 CpGs ~$20/sample

Targeted Bisulfite Sequencing 100s CpGs ~$100/sample

Illumina 450K microarray*
*No longer commercially available

485K CpGs ~$300/sample

Illumina EPIC microarray 850K CpGs ~$330/sample

Reduced Representation Bis Seq 1M CpGs ~$300/sample

Whole Genome Bis Seq 28M CpGs >$1000



• No guarantee that you will end up with sites of 
interest unless there is super deep sequencing
• Resolution can be low even with super deep sequencing

• Difficult for:
• Replication

• Existing algorithms (e.g. methylation clocks) that require 
specific CpG sites

• It depends on primary aim(s)

Practical Considerations
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Data Processing

Illumina 450K/EPIC Array

Columbia University Mailman School of Public Health18



• 450,000 - 850,000 “probes” fixed to a chip
• Each probe is specific for a single site

• BS-DNA is added to the array

• Target sequences bind to probes

• If targets bind to probes, fluorescent signal is 
released

• Color and intensity of signals is translated 
into numerical methylation levels at each 
queried CpG <- our current task

Guide to Illumina Microarrays



https://www.youtube.co

m/watch?v=lVG04dAA

yvY

https://www.youtube.com/watch?v=lVG04dAAyvY


• The raw files
• 2 per sample

• _Grn and _Red

• A “samplesheet” 
containing information 
about the assay

The .idats



• Please make sure all packages are installed

• Open up Rscript:
Preprocessing – ewastools

• Set working directory (line 19) to the correct path

• Run the code along with the presentation
• Please ask for assistance if you are running into errors

• I will talk about the rationale and what you expect to see at 
each step

Starting the Labs



• Developed by Drs. Jonathan Heiss (top) 
and Allan Just (bottom)

• Meant to be lightweight processing 
pipeline (i.e. no heavy manipulation of 
data)

• Originated from need to identify 
mislabeled and contaminated samples

ewastools



• Want to be flexible to different uses of the data
• Ensure consistency between analyses

• Ensure quality control

• Want to process the data as little as possible
• Do not want to introduce artefacts into the data

• Numerous approaches on preprocessing (e.g. filtering and 
normalization) 
• No real consensus

• Depends on application

Perspectives on Approach



• Around lines 15-27

• read_idats is the key function
• Input is a list of filenames without the common suffixes 

(_Red.idat and _Grn.idat), including the filepath

• Can take filled (.gz) files

Step 0 – Importing/Reading Data



• Lines 24-25 shown below:

Brief Gander at the Data



• Lines 26-27

Part 2



2 Common Stumbling Blocks

1. All samples/names in the samplesheet (typically a csv) 
need to be in the folder
• So there should be 2x as many .idat files in the folder as there 

are samples. There will be an error if not

2. The names should be correct
• Sometimes the .idat files are named after the chip # and position

• Example - 6929689021_R02C01

Typical Challenges / Errors



• We called our sample sheet “pheno”
• We will continuously add information to this sheet

• We have already pre-merged the samplesheet with the 
phenotypic data (or exposure, or another other data you 
might need)

• In your analyses, it might make your life easier if you 
merge them now
• Unless you are processing for other people and/or have large datasets

Tip



• Illumina contains 17 control metrics
• Link to the detailed document

• Samples need to pass all 17 metrics

• Code is around lines 32-39 

• You should see no failed samples

Step 1 –Sample Failure Check

(https:/support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf


But What if Some Samples Failed?

Columbia University Mailman School of Public Health31

Then it depends - How 
bad did it fail?

Did it fail 1 / 17 metrics by 
a little bit?

Did it fail 3 / 17 metrics by 
a lot?

There might be times where 
you might be inclined to 
keep samples if they 
narrowly fail one metric

But please be cautious

Use other steps to inform 
your decision!



• To check for sample contamination, we can use the X and 
Y chromosome probes to predict the sex

• Males – high in Y, medium in X

• Females – low in Y, higher in X

• Lines 43-58 
• Embarrassing mistake in the code – line 55 is supposed to list mismatches (M vs. F), but I forgot to change 

the sex variable from “male/female” to “m/f” so now it thinks it’s all mismatches. Oops.

Step 2 – Sex Check



• Visualization of 
intensities

• Lone male sample 
pretty high in Y intensity

• All female samples low 
in Y intensity and high 
in X intensity

• Samples in the “danger 
zone” need to be 
flagged and checked

Sex Chromosome Intensities by Sex



• Does not work well if your samples are all male or all 
female
• But you can get X and Y intensities and plot it out for your own 

sanity

Quirks about This Function



• For the purposes of our workshop, we will drop the lone 
male sample

• Can create flags for your own datasets
• Removal is recommended

Resolving Sex Mismatches



• Some target probes might not have worked
• Empty well

• Dust on chip

• Poor PCR

• So we want to look at total intensity relative to background 
“noise”
• Derive a p-value and address situations where there is 

insufficient separation between probe intensity and 
background

Step 3 – Detection P-Values



• Lines 68-96

• Only 2 lines are actually necessary:
• meth = ewastools::detectionP(meth)

• meth = ewastools::mask(meth,0.01)

• The rest of the code given are there for when you have 
both sexes
• Intent is to show differences in the # of detected probes on X / 

Y chromosomes

Detection P-Values



• 0.124%

• This will vary across datasets and is related to the quality 
of the samples and assay

• Note – there is an additional QC step (which we do not show) 
where you can assess # of failed probes per sample

So How Many Samples/Probes Did 
this Affect?



• Some pipelines will drop all of the probes that have any 
detection p-value higher than the threshold
• Benefit – more stringent, easier to manage during batch 

corrections

• Downside – lose all information about this site

• Prefer to just drop individual observations (making them 
missing) than the entire probe/site for the whole 
population
• People can always exclude them later if necessary

Masking vs. Dropping Probe 



• Differences in red 
and green channels 
can impact resulting 
methylation values

• Correction will 
improve technical 
replicate 
reproducibility

• Lines 103-129

Step 4 – Dye Bias Correction



See the Changes

• Figure on the right shows the % 
methylation values generated 
from raw data for heterozygous 
SNPs
• It should be at 0.5

• Correction brings that to 0.5



• Optional step, but useful

• A trade off – stringency vs. more data
• Decision may depend on research question

• Example – for DNAm clock, you might want to keep as probes 
as you can

• Drop probes if too many samples failed to overcome the 
background noise for any given probe (as determined by 
the detection p-values)

• 10% is a commonly used threshold

Step 5 – Drop “Bad” Probes



• Lines 135-144

• Removed 1816 CpGs

• Note – keeping probes 
that have large % 
missing will cause errors 
with downstream 
analyses

Vast Majority are Missing <10%



• 450K + EPIC are SNP 
microarrays
• SNPs being artificially 

generated through 
bisulfite conversion of 
unmethylated Cs

• Some probes do target 
real SNPs

• Beta values represent 
genotypes (trimodal 
distribution)

Step 6 – SNP Outliers



• Some SNPs cannot be assigned to one of the genotypes
• Fall in between the three peaks

• Model outliers by adding uniform distribution component to 
mixture model. Compute average log odds of being an 
outliers across all SNP probes

• Indicate either poorly performing arrays or degraded or 
contaminated samples

SNP Outliers



• Cross-hybridizing
• Probes that are cross-reactive to similar, but not target, 

sequences

• SNP-related probes
• CpG sites where methylation values are driven by SNPs

• For simplicity and ease, we will use a single function 
(rmSNPandCH)

• Lines 172-176

Step 7 – Remove More Probes



• There are many other resources to remove CH and SNP-
related probes

• For examples and resources, see:
• https://pubmed.ncbi.nlm.nih.gov/27717381/

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331917/

• https://pubmed.ncbi.nlm.nih.gov/31861999/

• Another good practice is to visually check distributions of 
significant clusters found by analysis to ensure it is not 
confounded by genetics

More about CH + SNPs

https://pubmed.ncbi.nlm.nih.gov/27717381/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331917/
https://pubmed.ncbi.nlm.nih.gov/31861999/


What Does the Data Look Like?



• Background correction

• Probe type correction

• Batch correction

Other Normalization Steps



• General term that refers to removal of unwanted variations 
in the data

• Already have dye-bias correction, but could normalize for 
background and technical variations

• Could correct for background noise
• preprocessNoob (background + dye bias) 

• preprocessFunnorm (where it uses Noob)

Normalization



• 2 different probe types
• Incorporate green and red 

channels differently

• rcp function from ENmix
package

• Partially addressed by 
background and dye bias 
correction

• Will not matter if analysis 
is CpG by CpG

• May induce noise in 
regional/cluster analyses

Probe Type Adjustment



• Historically a mandatory step in 
most microarrays

• In extreme cases (see figure), 
it is a necessity

• Recently, some question of its 
necessity when the samples 
are appropriately randomized

Batch Effects

Harper et al., 2013. 10.1158/1055-9965.EPI-13-

0114



• Actual batch effects can arise from 
a variety of sources:
• Assay itself - batch effects in 

Illumina arrays are observed 
between chips and chip positions. 

• Bisulfite conversion plates

• Operator, reagent lot

• Major differences can arise from 
types of kits used

• Machine drift

• Many are worth checking

Technical Batches 2 columns x 6 

rows

1 column x 8 

rows



• Each 850K chip has 8 samples, should we expect every 8 
samples to look exactly alike?
• What if one or two are truly 

biologically different? 
It would appear different

• What happens to this variability 
when we batch correct?

• Figure right shows real
example

Not Always an Easy Decision



• Run PCA
• Extract the first few principal components

• Examine (visually and statistically) if batches are 
associated with PCs

• Run ComBat or some other normalization
• Popular function to do batch correction (sva package)

• Uses an empirical Bayes framework to adjust for batch effects

• Note – transform your data to M-values before and then 
transform it back if you want beta-values!

General Set of Steps



• Can always include batch variable(s) in the modeling 
stage

• If DNAm is the outcome
• If there is a batch effect, could increase precision

• If there is no batch effect, takes away a few degrees of 
freedom

• If DNAm is the independent variable
• Done properly, batch should not be associated with outcome.

• Most likely scenario is that you lose a few degrees of freedom

Alternative to Batch Correction
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Dimensionality reduction technique.

Allows us to capture the major sources of 

variability in the data. 

Principal Components 
Analysis (PCA)

Raw PCA Normalized + ComBat 

Adjusted

Principal 

Component
Variance explained Variance explained

PC1 37.8% 19.8%

PC2 16.7% 8.7%

PC3 6.2% 4.5%

Raw data Normalized and batch-adjusted



• Another popular pipeline is based around the package 
“minfi”
Preprocessing – minfi

• More traditional, less “flexible”

• Major differences in code:
• Normalization is the first step (common options: NOOB, 

SWAN, BMIQ)

• Detection p-value calculated differently

• Probe type adjustment (via rcp)

Alternative Pipelines



• Lightweight and simple approach shown today

• There are other QCs one can do. Examples –
• Apply PCA to the data and look for outliers and weird samples

• Use agreement of SNPs to identify mislabeled samples (in 
twins studies or repeated measures from same individual)

• Plot out beta density of each sample to see if samples look 
odd

• Many labs’ pipelines will involve extra steps

There are Other Steps



• Often pre-processed for you. No access to idats.

• Most important thing… 
Make sure you have documentation and know 
whatever it is people did

Publicly Available Data



• When processing data from human studies, it might be 
used for different analyses

• Want flexibility for most scenarios
• Not dropping all non-detected probes (think detection p-value 

stage)

• What if you need a probe for DNAm clocks?

• No batch correction

• Keep data consistent across analyses because processing 
matters

Flexible Approaches



• Access to virtual machines or clusters are helpful, 
although not strictly necessary for smaller studies

• RAM dependent
• Can be intensive for large sample sizes

• Data processing takes the most memory
• ~200 EPIC samples can be done on 16GB of RAM 

• Most subsequent analyses require less RAM

• Aggressive management of R environment

Memory Requirements
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Contact Information

Dr. Allison Kupsco

• ak4181@cumc.columbia.edu

Dr. Howie Wu

• hw2694@cumc.columbia.edu

Happy to help!

mailto:ak4181@cumc.columbia.edu
mailto:hw2694@cumc.columbia.edu

