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So you're ready to begin your EWAS...

« Think critically about your research question.
« Generate your hypotheses.

« Consider your study design.

« Determine your confounders and covariates.
« Decide on your modeling strategy.
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Part 2:

Restart R and open the “IGSS 2021 Batch CellType EWAS Pipeline.R” script.
Reset your working directory and load the packages.
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Histogram of pheno$smoke_free_ years

Explore the phenotype data 2 o

- table(pheno$smoking_evernever) £
Ever Never R e B e
11 1@ 0 1 2 3 4 5 6 7

> table(pheno$smoking_5years) pheno$smoke_free_years

Histogram of pheno$age _sampling

Before_5Syears Never_Smoker Within_5years 0 -

5 10 6 < -

hist(pheno$smoke_free_years)
hist(pheno$age_sampling)

Frequency

I I [ I I
25 30 35 40 45
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Explore the meta data

> table(pheno$Sentrix_ID)

6929689021 6929689032 6929689045  ~cntrix ID s the chip name
7 7 7

> table(pheno$Sentrix_Position)  Sentrix position is the row and column indicator

RO1CA1 RO1CO2 RO2CO1 RO2CO2 RO3CA1 RO3CO2 RO4CO1 RO4CO2 RO5CA1 RO5CO2 RO6CO1L RO6CAZ
2 1 3 1 3 2 2 2 1 1 2 1
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Analysis Practice: Working with your cleaned data

This is the resulting file from processing

betas.clean <- readRDS("cleaned_betas.rds")
pheno <- read.csv("IG552021_Meta_data_for_GSE43976.csv", strip.white=1, stringsAsFactors=F) i

#remove the male participant
pheno <- pheno[pheno$sex != "male",]

#make sure the IDs 1n pheno match the column IDs in the betas and the order in the WB object
all.equal(phenofgsm, colnames(betas.clean))

Always make sure your meta data order matches your betas
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PCA to explore variability and batch effects:

Required packages: sva
betas.cleanZ = na.omit(betas.clean) cannot handle NAs

#' Calculate major sources of variability of DNA methylation using PCA
#' Need to transpose data so IDs are rows and CpGs are columns
PCobject <- prcomp(t(betas.clean2), retx = 7, center = 7, scale. = 1)

#' Extract the Principal Components from SVD

PCs <- PCobject$x

#' Proportion of wvariance explained by each additional PC

cummvar <- summary(PCobject)$importance["Cumulative Proportion”, 1:1@]
knitr::kable(t(as.matrix(cummvar)),digits = 2)

| PC1l PCZ2lI PC31 PC4l PG50 PCel PC71 PC&1 PC9| PC1@|

[ DU PR DY PR I PR PR PR PR
: : : : : : : : : :

| 8.111 8.211 8.27] ©.34] 0.39] 0.44] 0.49] 0.54| 0.58| 0.62|
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Visually explore the
variance in the data

#' Is the major source of variability associated with chip?
par(mfrow = c(1, 1))
boxplot(PCs[, 1] ~ pheno$Sentrix_ID,

ylab = "PC1",las=2, main="Chip",col=rainbow(8))

plot(PCs[,1]~PCs[,2],cex=1.5, pch=17,col=c("deeppink"”,"blue"™, "black™)
[factor(pheno$Sentrix_ID)], main = "Chip")
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Is the variability
assoclated with smoking?

plot(PCs[,1]~PCs[,2], pch=17,col=c("deeppink","blue")[factor(pheno$smoking_evernever)],
cex=1.5, main = "Smoking")
legend("bottomleft", legend=levels(factor(pheno$smoking_evernever)),bty="n",
cex=1.5,pch=17,col=c("deeppink","blue"))
plot(PCs[,1]~PCs[,2],cex=1.5, pch=17,col=c("deeppink”,"blue”, "black")
[fuctnr{phenﬂ$5mﬂking_Syeurs)], main = "Smoking in last 5 years")
legend("bottomleft”, legend=levels(factor(pheno$smoking_Syears)),bty="n",
cex=1.5,pch=17,col=c("deeppink”, "blue”, "black"))
Smoking in last 5 years
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#' What are the major sources of variability?
#' Run linear models with the first 10 PCs as outcomes
pheno$Sentrix_ID = as.factor(pheno$Sentrix_ID)

variables = c("sample_year", "smoking_evernever", Explore the
"smoking_5Syears", "pack_years", "Sentrix_ID") - -y .
variability with
res_all = data.frame() -
for (1 in 1:10) { regreSSIOn

for (j in variables) {

res = tidy(lm(PCs[,i]~pheno[,j1))  LOOP forregressions
res$PC = 1 over PCs and variables

res$variable = j
res_all = rbind(res_all, res)

}
}
res_all = subset(res_all, term != "(Intercept)") Categorize the p-values
res_all$pval = cut(res_allsp.value, breaks = c(@, 0.05, 0.1, 0.2, 0.5,1)) and clean up for plotting
res_all$term2 = paste(res_all$variable, gsub("pheno[, 31", "",

res_all$term, fixed = ), sep = "_")
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Plotting the regression results

ggplot(res_all, aes(x =
geom_tile()+

as.factor(PC), y = term2, fill = pval)) +

scale_fill_manual(values = c("darkred", "red", "orange", "yellow", "white"))

We can see that chipis a
significant source of
variability in PCs 3 and 4

termz
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smoking evemever MNever=
smoking Syears Within Syears -
smoking ayears Never Smoker =
sentrix_ 1D 65929689045 -

sentrix_ 1D 6929689032 -
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pack years -
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Cell-type
adjustment

Data Preparation

—

— Modeling Preparation

} Modeling

Cell-type adjustment
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Hematopoietic stem Lymphoid cells
& progenitor cells » O T cell

Cellular Heterogeneity

Most human tissues and biospecimens
- ®
are composed of many different types @ — @

Of Ce"S P e \yeloud cells @ g ’
DNA methylation plays a critical role in @ O @ . Fiadiiopi

cell development and differentiation.
Eosinophil

> o Basophil

Platelet

which is where most human population
related DNA methylation comes from.

This includes peripheral blood cells,

Important Aside: How is your tissue | I @

relevant to your research question? MEP . @@ cyiocye
Erythroid cells @

Trends in Endocrinology & Metabolism

Lee et al., 2020
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Cellular Heterogeneity

Each different cell type has a different pattern
of DNA methylation.

These differences are often greater than small
Impacts from an exposure or disease and can
drastically influence results.

Houseman et al., 2012
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S h O u I d We adj u St fo r a. Confounding by cell composition

cell type cComposSItioN  ssposre———s ouameaytaton s piscas
INn our analyses? I

— -

This depends on your research (_ CellComposition

- -

guestion and hypotheses. it
b. Mediation Effects

iti DNA Methylati Disease
Cell composition can be a confounder, ERO am—f Ylation ey Cell COMPOSItion sy

) ) and/or
mediator or nothing at all. EXPOSUre sy Cell COMPOSIION ey DNA Methylation ey Disease

But we often adjust for it since it can c. Independent of cell composition effects

have a major impact on results. Buoonry el DHA Mkt s DI

Houseman et al., 2015
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ey y—

Cell Type Deconvolution

Cell-type specific
e methylation data
e

methylation data

Y
DMRs

We can use reference panels with known
iInformation on cell types to determine the

proportion of each major cell type in our samples. : | . pa B el )
\J
Samples 1...n Avg. beta-value per cell type
There are reference databases for different sample @
types: Result: a matrix of samples with estimated immune cell type proportions
* Adult whole blood - T
« Cord blood (includes nucleated RBCs)
e Placenta = Gran; | Mono, | B-cell, | CD4T, | CD8T, | NK;
* Buccal Cells _g- Gran, | Mono, | B-cell, | coaT, | cD8T, | NK,
« Saliva §
« Nasal Cells
Gran, | Mono, | B-cell, | CDA4T, | CD8T, | NK,

L J
1

&2 COLUMBIA | MALLMAN sCHOOL Immune proportion estimates for samples 1...n

- Titus et al., 2017




Cell type estimation in

practice T
Cell type distribution

Requires ewastools. Can also do with minfi but is much

) ] o
slower and requires more memory =
—
#' we are using the Reinius reference dataset . 9 -
cellprop = estimatelLC(betas.clean,ref="Reinius") %‘ .
=
#' Here are the estimates E L -
knitr::kable(cellprop, digits = 2) = g
w5 =
#' note that they are close to summing to 1 o — Y o
—
summary(rowSums(cellprop)) _ 5 E S — —_—
Min. 1st Qu. Median Mean 3rd Qu. Max . | | | | ' '
0.9859 1.0043 1.0075 1.0074 1.0124 1.0226 GR CDh4 CD& B MO NK
#'Distribution of estimated cell types Cell type

boxplot(cellprop*10@, col=1:ncol(cellprop),
xlab="Cell type",ylab="Estimated %" ,main="Cell type distribution")
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#'Distribution of estimated cell types by smoking status
all.equal(pheno$gsm, row.names(cellprop))

pheno = cbind(pheno, cellprop)

long = gather(pheno, key = "Cell_Type", value = "Proportion", 17:22)

ggplot(long, aes(x = Cell_Type, y = Proportion, fill = smoking_evernever)) +
geom_boxplot() + theme_bw()

0.8 9

Do cell types
assoclate with our
exposure?

smoking_evernever

Proportion
o
N
m
3

0.2 1

0.0 9
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Individual
CpG
Analyses

Data Preparation

—

— Modeling Preparation

} Modeling
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5 Coefficient = 0.037 P-value = 2.95e-05 Coefficient = 0.028 P-value = 2.58e-05

0.9
0.8 0.6 EI
- 0.7 - %
S 06 S 044 S
CpG-by-CpG Analyses H
80 0.4 & Q
0.3 =
o2 - e B
Most common and basic EWAS analysis. 2 1 0 1 2 3 2.4 0 1 2 3
Cadmium (log-transformed) Cadmium (log-transformed)
Fit separate adjusted linear models for 450-850 ~ | | -
@ 20+ An epigenome-wide association study
CpGs s meta-analysis of educational attainment x Lead probes
a === P.value = 1x10~'
: . % R e P-value = 1x10™°
Estimate coefficients and p-values for each CpG S 15 -
site. -
2
Modeling considerations still apply: 8 0] AP
g FZRLIX
. . o ALPPL2X IERS X MYO1G
« Must fit model assumptions B emmmemmmamne BHBRY Ko s KMLOIG e
3] ! S % - o o Sefe
. . - - = Tl f-padd R e e X2l DANTAL " ". """"" e SR L R A AN TRy
« Consider potential relationships between all S m % a -1‘-;;;.*. et hi ﬁ IR r B T
. . - . : "
variables including confounders and mediators S T T T "i—ma TETRETRETIET
Chromosome 16 18 20 22

Linner et al., 2017
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1.0

0.8

Beta-values vs M-values

Beta-value
04 05 06

0.2

Beta-values: Proportion of &
methylated probes.

0.0

Bound between 0 and 1. Doesn'’t e

satisfy modeling assumptions.
8= Mi
' Mi+U+100

015
1.5

010
10

Standard Devation
Standard Deviation

05

M-values: Continuous and semi-
homoscedastic value. But
uninterpretable.

B,

00 0.2 04 06 08
M—Val uezlog Z(W) Mean Beta-value of technique replicates Mean M-value of technique replicates
M
Du et al., 2010. https://doi.org/10.1186/1471-2105-11-587

000
00

10 -8 B 2 0 2 R
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https://doi.org/10.1186/1471-2105-11-587

The truth

] " Ho T H, Fal
Multiple Testing and S IS
Type | Errors £ 5 comet | Incorect

58 '2:7 Decision :-I?rlfoer"
Conducting ~800,000 hypothesis tests. =
Leads to concerns about inflation of Type | error. 5 g IncTc:,Lreeclt Correct
If we set our alpha at 0.05 then we could expect = Error Decision
42,500 significant sites by chance for the EPIC array.
Bonferroni Correction: False Discovery Rate (FDR) Correction:

Divide alpha by the number of tests Controls the expected proportion of false positives.

conducted. FDR is the proportion of significant sites that are false positives.

Often too conservative — restricts

Most frequently use Benjamini-Hochberg for this: provides a g-
power to detect true effects.

value

MAILMAN SCHOOL
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Genomic Inflation (A)

Another concept borrowed

from genetICS' NULL OVERINFLATED
Lamba (A) The ratIO Of the Distribution of Null P-values B

1.0

median of the empirically T TR T o
observed chi-square test
statistics to the expected

median under the null.
A=1 Null B Expected uniform distribution

0.8

Density
0.6

04

0.2
|

0.0
|

| | | T T | o

A > 1: Overinflated
A < 1: Underinflated 00 02 04 00 08 10 0?0 sz 074 0?6 DTB 1f0

P-value
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a Case-control Status

15~

Q-Q Plots

Graphical examination of
genomic inflation.

observed - l0gsq(p)

A high genomic inflation may "
Indicate unaccounted for
confounding.

QC, batch and cell type expected -Iogyo(p)
adjustments can reduce o o= (8 Aommnge 353 8] Minssanis= 1

genomic inflation. B No covariates [l Basicoc [l Ful oc

Guintivano et al., 2020
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« TXNIP

12
]

Visualizing your results:
Volcano Plots

€g16765088 »

10

Visualize effect estimates and p-values.

0 e CPT1A
€g24704287 * « HDAC4

Can see If results are skewed or how
many CpGs are significant.

-log10(P-value)
6
|

-0.05 0.00 0.05
Effect Size
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14 —

TXNIP
Visualizing your results:
Manhattan Plots ABCG1
10 =

Allows us to see associations that may be g e
spatially related. = DACs CPTIA cg24704287
Also to make sure that we don’t have g,°-, A .

K}

|

skewed findings by chromosome or
region.

1 2 3 4 5 6 7 8 11 13 15 18 21

Chromosome
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Important consideration: Outliers

Modeling Strategy

Ordinary least Fast Sensitive to outliers Cpg.assoc

squares

Robust regression Insensitive to outliers  Slow RIm (robust package)
Limma (robust M- Allows a small # of slower than OLS, limma

estimation) outliers faster than rim

Removal of values < or Removes outliers Leaves missing values

>3 |1QR or SD
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- CpG.name = "cg@5575921"
Start Wlth a CpG.level <- betas.clean[CpG.name, |
Slﬂg|e CpG #' make a smoking dummy variable

phenofsmokeZ <- ifelse(pheno$smoking_evernever == "Ever", 1, @)

CpG within the aryl hydrocarbon receptor
#' difference in methylation between smokers and non-smokers for this CpG
repressor.

#' some descriptive statistics
knitr::kable(cbind(Min = round( tapply(CpG.level,pheno$smokeZ2,min ),3),

< Mean = round( tapply(CpG.level,pheno$smoke2,mean ),3),

t Median= round( tapply(CpG.level,pheno$smokeZ,median),3),

£ Max = round( tapply(CpG.level,pheno$smoke2,max ),3),

£ SD = round( tapply(CpG.level,pheno$smoke2,sd ),3),

§ N = table( pheno$smoke2 )))
% Clear difference between
% smokers and nonsmokers
0.55 T T T T T y T . .

0 50 100 150 | | Min| Mean| Median| Max | SDI NI

Cotinine (ng/ml) | 1==] === pem——- - P i M

1@ | @.872] @.887] O.B&8| ©.9909| ©.013| 10|

Philibert et al., Clin Epigenetics. 2013 1 | 0.491] ©.759] ©.8411 0.875| 0.143| 11|
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Run the regressions

Beta values
#' linear regression on betas
summary(1m(CpG.level~pheno$smoke2))$
coefficients[2,c("Estimate", "Pr(>Itl)","Std. Error")]

Estimate Pr(>1tl) Std. Error
-0.12801478 0.01087274 0.04535242

M values _ _
comparison with m-values|

CpG.mlevel <- log2(CpG.level/(1-CpG.level))

#' linear regression on m-values
summary(1m(CpG.mlevel~pheno$smoke2))$
coefficients[2,c("Estimate", "Pr(>1tl)","Std. Error")]

Estimate Pr(>1tl) S5td. Error
-1.157195095 ©.002999132 @.340272865

MAILMAN SCHOOL
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Visualize the findings

par(mfrow=c(1,2))
boxplot(CpG.level ~ pheno$smoke2, main=paste@("Beta-values\n",CpG.name), col=c("blue","red"))

boxplot(CpG.mlevel ~ pheno$smoke2, main=paste@("M-values\n" ,CpG.name), col=c("blue","red"))
Beta-values M-values
cg05575921 cg05575921
S | e— o
—_— T L
5 — = ]
== Qo —]
2 9~ _ E v
o) = 0 —
o —]
&) - & | ;
o S :
- | -

&2 COLUMBIA | ¥ pheno$smoke2 pheno$smoke?2
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EWAS and results using CpGassoc

Barfield et al. Bioinformatics 2012 http://mwww.ncbi.nlm.nih.gov/pubmed/22451269

system.time(resultsl <- cpg.assoc(betas.clean, pheno$smoke2))

head(cbind(resultsl$coefficients[,4:5], P.value=resultsl$results[,3]))

#' and the top hits

head(cbind(resultsl$coefficients|[,4:5], P.value=resultsl$results|[,3])[order(resultsl$results[,3]),1])
#' check with previous result on our selected CpG (running 1lm without CpGassoc)
cbind(resultsl$coefficients[,4:5],resultsl$results[,c(1,3)]1)[CpG.name, ]
summary(1lm(CpG.level~pheno$smoke2))$coefficients[2,c("Estimate"”, "Pr(>Itl1)","Std. Error")]

What the results look like: Top hits

effect.size std.error P.value effect.size std.error P.value
rs10796216 ©0.13709814 ©.1511038 @.37560065 cgl9089328 0.075446334 0.0112270936 2.013721e-06
rs715359 -0.06905560 @.1562395 @.6634895 cg01222380 0.032745190 0.0052952767 ©.090862e-06
rs1040870 -0.07694116 ©0.1517100 @.6178787 cgl7108971 -0.009406299 0.0015338402 6.785121e-06
rs10936224 -0.03998900 ©.1258925 @.7542194 cg20849025 ©@.038218478 ©.0063114730 7.984584e-06
rs213028 0.20073963 0.1334768 ©.1490411 cg@9906747 @.002468012 0.0004198609 1.164015e-05
rs2385226 -0.07040598 ©.1363635 ©0.6115941 cgZ26540559 -0.058774394 0.0104376064 1.981634e-05
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resultsZ2 <- cpg.assoc(

Run adjusted

models )

betas.clean
,pheno$smokeZ
,covariates=pheno[,c("age_sampling”, "CD8&","CD4","NK","B","MO","GR", "Sentrix_ID")]

The top ten CpG sites were:
CPG.Labels T.statistic

384931
115137
391947
50616

120425
329543
195776
111887
351054
82199

We can see that there are
no FDR significant hits.

cg24755163
cg25561762
cg13997140
cg20364839
cg05201784
cg17409276
cg22935501
cg®9234599
cg26210602
cg00022558

-12.
.851164
.675570
.544839
. 380813
.609876
.377838
04877
.045352
.775378

=] Do Do 0o Do WO W W W

175625

[l e e I = I L I T i

P.value Holm.sig

.548006e-07
.823440e-06
.148791e-06
.432067e-06
.846526e-006
.152515e-06
.842192e-06
.096993e-05
.120572e-0@5
.509769e-05

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

o i o I I s

FDR

.1183192
.2464881
.2464881
. 2464881
. 2464881
.4439685
.4850542
.5390@736
.5390736
.6271988

= = WD S W N W

To access results for all 432963 C(pG sites use object$results
or sort(object)$results to obtain results sorted by p-value.

General info:

Min.P.0Observed Num.Cov fdr.cutoff FDR.method Phenotype chipinfo num.Holm num.fdr

1 2.54800ce-07

8

0.85

smoke/l

@ sites were found significant by the Holm method

MAILMAN SCHOOL
OF PUBLIC HEALTH
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@ sites were found significant by BH method

gc.p.value

.@91175e-07
.199352e-06
.590239%e-06
.9303635e-06
.427676e-06
.384745e-006
.402286e-06
.313068e-05
.341148e-0@5
.804145e-05

NULL %)



#'using mvalues

COmpare to results3 <- cpg.assoc(

betas.clean

mOdeIS Wlth ,pheno$smoke2

,covariates=pheno[,c("age_sampling”, "CD8","CD4","NK","B","MO","GR", "Sentrix_ID")]

M _Val ues ,logit.transform=TR1E

Set logit.transform = TRUE The top ten CpG sites were:
CPG.Labels T.statistic P.value Holm.sig FOR gc.p.value

384931 cg24755163 -11.037629 6.386197e-07  FALSE 0.1777160 6.714800e-07
_ 391947 cg13997140 10.743140 8.209292e-07  FALSE 0.1777160 8.630036e-07

Top CpG is the same — 82199 cgPBB22558 10.222123 1.299173e-06  FALSE ©.1874979 1.365241e-06
But the others are not 120425 cg@5201784  9.369009 2.879193e-06 FALSE ©.3116460 3.023363e-06
in the same order. 50616 cg20364839  8.695980 5.630039e-06  FALSE 0.3704131 5.907678e-06
115137 cg25561762  8.665893 5.806901e-06  FALSE 0.3704131 6.093044e-06

For instance cg00022558 195776 cg22935501  8.635986 5.988714e-06  FALSE 0.3704131 6.283591e-06
< 310 here but was 10 351054 cg26210602 -8.251880 8.965912e-06  FALSE 0.4852385 9.402782e-06
. 9925 cg@3892551  8.055157 1.108663e-05  FALSE ©.5333443 1.162365e-05
with beta values 51292 cg17108971 -7.854350 1.382595e-05  FALSE ©.5986123 1.449136e-05

To access results for all 432963 CpG sites use object$results
or sort(object)$results to obtain results sorted by p-value.

General info:
Min.P.Observed Num.Cov fdr.cutoff FDR.method Phenotype chipinfo num.Holm num.fdr
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Examine the
genomic inflation

par(mfrow=c(1,2))
plot(resultsl, main="QQ plot for association between methylation and Smoking\nadjusted for cell proportions")
plot(results2, main="QQ plot for association between (mvals) methylation and Smoking\nadjusted for cell proportions"’

lambda <- function(p) median(qchisq(p, df=1, lower.tail= ),
nha.rm= ) / qchisq(@.5, df=1)
lambda(resultsi$results[,3]) Smoking unadjusted Smoking adjusted
#' Lambda after cell type adjustment — e — >
® w —| ® Holm-significa e @ © | ® Holm-significant -
lambda(results2sresults[,31) = o FDRsignificgft(BH 2 _ || © FDR-significany{BH
4 < -{|--- 95% configénce inter 3 - -~ 95% confideng@ inter
[1] 1.036742 d < -y
o P ™
[1] ©.9685715 = 5 7
B Y B o~
c c
& — @ ]
No evidence for genomic inflation — z s 7
underinflation indicates lack of power - - 4T
0 1 2 3 4 5 6 0 1 2 3 4 5 &6
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Map to genomic
annotations

Read 1n the 1llumina annotations
I1luminaAnnot <- readRDSC"IlluminaAnnot.rds")

#' Restrict to good quality probes and order data frames
I1luminaAnnot <- IlluminaAnnot[IlluminaAnnot$Name %in% allCpGs, ]
ITluminaAnnot <- IlluminaAnnot[match(allCpGs, IlluminaAnnot$Name), ]

#'I'

#' Extract the CpGs with p < 0.001 for later GO analysis
sigCpGs <- resultsZ2$results$CPG.Labels[results2iresults$P.value < @.001]
allCpGs <- resultsZ2$results$CPG.Labels

datamanhat <- data.frame(CpG=results2iresults[,1],Chr=as.character(IlluminaAnnot$chr),
Mapinfo=I1luminaAnnot$pos, UCSC_RefGene_Name=I1luminaAnnot$UCSC_RefGene_Name,
Pval=results2$results[,3], Eff.S5ize =

ktd.Error

= results2icoefficients[,5])

Info on chromosome, genomic location, and nearest gene
Mapinfo UCSC_RefGene_Name

384931
115137
391947
50616

120425
329543
195776

CpG  Chr
cg24755163 chr?
€g25561762 chrl3
cgl399714@ chr7
cgl@364839 chrl@
cg@5201784 chrl3
cgl7409276 chr5
cg2Z2935581 chrl?

26416987
20870028
86849809
54075528
74709101
60241424
78234799

C7orfZ3

DKK1

KLF12

NDUFAFZ ;ERCCS8
RNF213;RNF213

Pval
Z.548006e-07
1.823440e-0Pb
Z2.148791e-0Bb
Z2.432067e-06
Z.846526e-06
6.152515e-06
7.842192e-06

results2$coefficients[,4],

Eff.S1ize Std.Error
-0.025380055 0.0020844971
0.041071803 ©.0041692334
0.007223002 ©.0007465195
0.063543767 ©.0066573951
0.005903483 ©.0006293147
0.003988757 ©.0004632770
0.018412046 ©.0021977084
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par(mfrow=c(1,1))
plot(results2$coefficients[,4],-1ogl@(results2$results[,3]),
xlab="Estimate", ylab="-1logl@(Pvalue)", main="Volcano Plot\nadjusted for cell proportions",ylim=c(@,8))
#Bonferroni threshold & FDR threshold
ablineCh = -10g10(0.05/(nCpG)), lty=1, col="#FDE725FF", lwd=2)

Volcano Plot
adjusted for cell proportions

VOICanO PIOtS Can clearly see that there o _

Is little significance

12

Hypomethylatifpn (135) Hyperm;ethylation (200)

-log10(Pvalue)
4
|

10

Plot would ideally look like this

-log10 (P-value)

-04 -02 00 02 04 06

Estimate

BRI, { NP -AJ
R @
pis 0 Oz = Oéz 0 - ENVIRONMENTAL HEALTH SCIENCES 37
Delta Beta (GSV vs IMA)

2

Nazarenko et al., 2015
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#'## Manhattan plot for cell-type adjusted EWAS

#' Reformat the variable Chr (so we can simplify and use a numeric x-axis)
datamanhat <- subset(datamanhat, !is.na(Chr))

datamanhat$Chr <- as.numeric(sub("chr","", datamanhat$Chr))

#' the function manhattan needs data.frame including CpG, Chr, MapInfo and Pvalues
manhattan(datamanhat, "Chr", "Mapinfo", "Pval", "CpG",

genomewideline = -10gl@(@. GS/CnCpG)), suggestiveline =

main = "Manhattan Plot \n adjusted for cell proportions"” ,y11m c(0,8))

Manhattan Plot
adjusted for cell proportions

Manhattan Plots 8 -
6 — *

I

0 |

1 2 3 5 7 9 11 13 16 20
Chromosome



Regional
Analyses

Data Preparation

—

— Modeling Preparation

} Modeling
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Regional 1 O O

An alyses S5UTR JUTR

CpGisland Gene body
CpG dense, usually
unmethylated T Methylate d CpG
What is the significance of a change in methylation of a single CpG? TUnmethWated CpG

Many CpGs are located near each other in a CpG island or gene body.

Individual CpG analyses assume independent tests — but many CpGs are
correlated

Methods are available to model groups of CpGs
= Bump-hunting (Jaffe, et al. Int J Epidemiol, 2012): uses smoothed methylation values to detect
DMRs
= Comb-P (Pedersen, et al. Bioinformatics, 2012): Finds regions of enrichment from spatially
assigned P values
= DMRcate (Peters, et al. Epigenetics Chromatin, 2015)

MAILMAN SCHOOL
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DMRcate uses a default
value of A=1,000 bp, as

do Bumphunter and Pro

DMRcate: Steps be Lasso.

1. Apply standard linear modelling to the data using exposures, outcomes, and covariates.

2. Apply Gaussian smoothing to the resulting per-CpG-site test statistics using a given
bandwidth, A.

3. Model the smoothed test statistics.

4. Compute P values based on this model, adjust for multiple comparisons and select
threshold.

5. Agglomerate nearby significant CpG sites, again using A.
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DMRcate: Pros and Cons

Advantages: Disadvantages:

Minimizes multiple testing Difficult to make clusters when CpG

Can scale with technology coverage IS sparse

Assumes our definition of clusters is:
1. Meaningful
2. Correct
3. CpGs within behaves similarly

Very fast

Complementary to linear adjusted
models (limma or linear regression)

DMRs are based on effect size, not
direction of effect

Variation between datasets

Susceptible to overinflation

MAILMAN SCHOOL
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DMRcate
Define the model

model <- model.matrix( ~smoke2+age_sampling+CD4+CD8+NK+B+MO+GR+Sentrix_ID,data=pheno)

myannotation <- cpg.annotate("array", na.omit(betas.clean),
bnalysis.type="differential",arraytype="450K",
what="Beta",design=model, coef=2)

Annotate for
selected CpGs

#'Regions are now agglomerated from groups of significant probes
#'where the distance to the next consecutive probe 1s less than lambda nucleotides away
dmrcoutput.smoking <- dmrcate(myannotation, lambda=1000, C=2, pcutoff = 0.0001)

o _ Here we set a more liberal
This is the average distance p-value cutoff to have hits for
example purposes

MAILMAN SCHOOL
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Look at the results

GRanges object with 66 ranges and 8 metadata columns:

segnames ranges strand | no.cpgs min_smoothed_fdr Stouffer HMFDR
<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric> <nhumeric>
[1] chrll 1283875-1283946 | 2 1.53972e-17 ©.993473 0.430288
[2] chr7  26416735-26416987 * 3 9.66354e-11 ©0.999995 0.531155
[3] chrl@ 616959-617105 * 3 2.27770e-08 ©.999995 0.531155
[4] chrl3  74708579-74709519 * 4 2.37825e-13 1.000000 0.601677
[5] chrl2 133307618-133307702 * 3 3.10976e-07 1.000000 0.851237

Fisher maxdiff meandiff overlapping.genes

<numeric> <numeric>  <numeric> <character>

0.628877 0.1327492 0.11031085 <NA>

0.858440 -0.0253801 -0.00844255 <NA>

0.858440 -0.0705536 -0.03935917 DIP2C

0.957477 0.0154242 0.00597809 <NA>

0.990869 -0.0069583 -0.00260668 ANKLE?2
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# set up the grouping variables and colours
pheno$smoker<-as.factor(pheno$smoke2)

cols <- c("magenta","darkgreen")[pheno$smoker]
names(cols) <- levels(pheno$smoker)[pheno$smoker]]

Chromosome 1 (< N -:-:-:-:_-:-:-:

74.704 mb 74.706 mb 74.708 mb 74.71 mb 74.712 mb 74.714 mb

74.705 mb 74.707 mb 74.709 mb 74.711 mb 74.713 mb

VI 4

Make plots

|

IO YOO YOI XX 11T,
e

h?d I LI LI LU L LU
OO LD
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Interpretation
of Results

Data Preparation

—

— Modeling Preparation

} Modeling

Interpretation
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Interpretation of results

It's not enough to say — these CpG sites were
associated with our exposure.

How can our results be applied?

Predictive biomarkers or disease
mechanisms?

What biological process do they indicate?
Are they enriched in specific pathways?
How do they compare to previous studies?
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Where to find information about your CpGs

Lots of information is in the lllumina manifest: Gerigs and Genores
Chromosome and locations
Nearest gene
GpG context o 1 i e T e

Explore sites on UCSC genome browser
Literature review on top sites i
Compare results to previous studies = === )
Gene ontology analyses (gometh in missMethyl package)

Pathway analyses (gometh/DAVID)
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gometh: Gene ontology testing for 450K

methylation data

An ontology comprises a set of well-defined terms
with well-defined relationships.

No need for user-dependent, non-systematic,
manual annotations when there are numerous
affected genes

Two step process

1. Identify target genes of the epigenetic change
2. Use ontological analysis to guess the functional

o Guleamat

G o |
o fi
o g
H
B2
i3

Sl
- —
(e }——o~" 7 !
-~ .
- itoc hondrion .
(o

151 R
Ex diated

- - Bxsone nediae

o | [copt | [prtea ] [owting] [sianet ] [ wiot | [antrs |- ———————————————# p3mgative frecoack

Impact of epigenetic changes

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02388-x
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_ check <- getMappedEntrezIDs(sig.cpg = sigCpGs)
Running gometh length(checkisig.eg)

316 genes

F' Run gometh using GO
#' Need to include all CpGs tested so that there is a background
gst <- gometh(sig.cpg=sigCpGs, all.cpg=allCpGs, collection="G0", Can see that none of

_ plot.bias=TRUE) these are significant
topGSA(gst, n=10)

ONTOLOGY TERM N DE P.DE FDR
G0:0007131 BP reciprocal meiotic recombination 52 7 1.859867e-05 0.2393422
G0:0035825 BP homologous recombination 53 7 2.117042e-05 0.2393422
G0:0003149 BP membranous septum morphogenesis 10 4 8.113152e-05 0.6114883
G0:0060412 BP ventricular septum morphogenesis 45 7 1.258568e-04 0.7039517
G0:0097305 BP response to alcohol 226 14 1.556658e-04 0.7039517
G0:0007127 BP meiosis I 112 8 4.506708e-04 1.0000000
G0:0022612 BP gland morphogenesis 121 10 5.774465e-04 1.0000000
G0:0061982 BP meiosis I cell cycle process 117 8 6.303332e-04 1.0000000
G0:0003281 BP ventricular septum development 76 8 6.363774e-04 1.0000000
GQ:?0§@41% ~_BP cardiac septum morphogenesis § 8.352?45e—@4 1.0000000



KEGG pathway analysis

gst.kegg <- gometh(sig.cpg=sigCpGs, all.cpg=allCpGs, collection="KEGG")
topGSA(gst.kegg, n=10)

Description N DE P.DE FDR
path:hsa@@13@ Ubiquinone and other terpenoid-quinone biosynthesis 11 2 0.008934156 1
path:hsa@0360 Phenylalanine metabolism 15 2 0.025027551 1
path:hsa00730 Thiamine metabolism 15 2 0.034576087 1
path:hsa04714 Thermogenesis 212 8 0.040611279 1
path:hsa@4919 Thyroid hormone signaling pathway 117 6 0.04943491 1
path:hsa03040 Spliceosome 124 5 0.058843071 1
path:hsa@1240 Biosynthesis of cofactors 149 5 0.076989895 1
path:hsa®3013 Nucleocytoplasmic transport 101 4 0.082222929 1
path:hsa@5166 Human T-cell leukemia virus 1 infection 214 8 0.083788637 1
path:hsa@4110 Cell cycle 123 5 0.087252966 1

MAILMAN SCHOOL
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Epigenetic
Clocks

— Data Preparation

— Modeling Preparation

} Modeling
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Field et al., 2018

100 year>

Epigenetic
clocks

Py

%43
ﬁ*ﬁ

Healthspan and lifespan are not
always equivalent.

Different individuals may age at o 0 160 Vea’-">
different rates according to their
. . Hybrid chronological-
genetlcs, I|feSters and B Chronological clock Biological clock biological clock
environment. i} ..U i} .. ) o J
1) Qo : oo @
© . 2 ol ‘ g ;97 .
5 i k) o o
. - ; B @ g ®e
The epigenome has been found 3 o® Zl o ® o
- . . )] V]
to be a sensitive indicator of = ,O‘ | o | o

biological aging processes.
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Chronological age

Chronological age

Chronological age

ENVIRONMENTAL HEALTH SCIENCES 53




The many epigenetic clocks

2013 > 2018 g 2019

Horvath's pan Hannum's Horvath's skin PhenoAge GrimAge PedBe

tissue clock clock and blood clock by Levine by Horvath by Mc Ewen
o
N
o
~ ~
@ =4 T
@
S
353 CpGs 71 CpGs 391 CpGs 513 CpGs 1030 CpGs 8‘
|_

L Tissue independent Whole blood J Tissue independent  Tissue independent Tissue independent Buccal epithelial cells
» M biological
- Measures EAAin  Predicts phenotypic  Predicts lifespan mEAEn DISDgRARage:
Measure aging rate sx-vivo stodies age: mortality risks and healthspan information on pediatric diseases risk

and on potential developmental defects

Most clocks were developed using machine learning to predict chronological age — but
more recently epigenetic clocks have focused on phenotypic aging and mortality.
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Horvath’'s DNA methylation age

Developed using 8,000 samples and 51 tissue types.
Consists of 353 CpG sites.

CpGs show enrichment for cell death/survival, cellular growth/ proliferation,
organismal/tissue development, and cancer

Has since been adapted for 850K data but is only available via the web portal:
http://dnamage.genetics.ucla.edu/

MAILMAN SCHOOL
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Epigenetic Age
Acceleration

We often use the difference
between chronological age and
DNA methylation age as a more
sensitive indicator of biological

aging.

Can also calculate using the
residuals of a regression of DNA
methylation age by chronological
age.

@2 COLUMBIA | 88050 iacnn

100 - .
Age acceleration

80 Normal aging

60

Age deceleration

Biological age

40

20

] 1 ] 1 1
0 20 40 60 80 100
Chronological age

Yu et la., 2020

EPIGENETIC AGE DECELERATON EPIGENETIC AGE ACCELERATION

Improved lifestyle

* Smoking cessation

T Reasonable alcohal intake

Damaging environmental factors

.:'!' smoking

T’TT Excessive alcohol intake
g Poor nutrition

# Stress and childhood trauma

i Balanced diet

Reprogramming of the cells

Various methods such as

with or without a loss of
function, in a cylic manner
or using gene editing tools.
Low HiE"  pisk of age-related diseases

I:- Such as chronic inflammation, cancer,

Alzheimer's disease.

Topart et al., 2020
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Questions to ask ourselves in DNAmM age analyses

* What is the goal of my study?

Each clock was developed based on a specific set of predictors — chronological
age, aging phenotypes, or mortality.

* Why is this an important research guestion?
« How are we going to apply these results?

* It's important to keep in mind that these clocks were developed as predictors — they
do not necessarily indicate a causal process.
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Estimating DNAmM age with the WateRmelon package

suppressMessages(library(wateRmelon))

DNAmAge <- as.vector(agep(betas.clean))

hist(DNAmAge)
boxplot(DNAmAge);
ktripchart(DNAmAge, vertical = T,method = "jitter"”, add = 7, pch = 20, col = "'red')
Histogram of DNAmAge
. o '
0 — 0o ..I
5 < o ood
5 o < 7 *
g [ ]
L B S - °
T 0 _ S
o — o™ e | @
I I | [ [ [ | o |
25 30 35 40 45 50 55, R — '

DNAmAge



Relate to chronological age

#' Correlation; agreement
plot(pheno$age_sampling,DNAmAge,pch=21,ylab="Hortvath's DNAm Age",

xLlab="Chronological Age",cex=1.2, bg=alpha("deepskyblue”,0.45),main="Epigenetic Clocks")
legend("topleft",legend=paste@("r=",round(cor(pheno$age_sampling,DNAmAge),2)),bty="n")
abline(1lm(DNAmAge~pheno$age_sampling),col="red",1lw=2)

Epigenetic Clocks

r=0.83

Hortvath's DNAm Age
30 35 40 45 50
|

30 35 40 45
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Calculate age acceleration

#' Age Acceleration Residuals
AgeAccelerationResidual <- residuals(1lm(DNAmAge~pheno$age_sampling))
hist(AgeAccelerationResidual)

Histogram of AgeAccelerationResidual

2 3 4 5 6
I

Frequency

1
I

0
I

-5 0 5) 10

MAILMAN SCHOOL AgeAccelerationResidual
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boxplot(AgeAccelerationResidual ~pheno$smoking_evernever, col=c("blue","red"))
wilcox.test(AgeAccelerationResidual ~ pheno$smoking_evernever)

boxplot(DNAmAge ~pheno$smoking_evernever, col=c("blue","red"))
wilcox.test(DNAmAge ~ pheno$smoking_evernever)

E o [T/ —
o v | I
k> |
Q o I
. S < o
Relation to S o - < ¥ |
. [0 a o _ !
& ™
smoking status 8 . _ °7 j
o)) ™ R
< | | | |
Ever Never Ever Never
pheno$smoking_evernever pheno$smoking_evernever
data: AgeAccelerationResidual by pheno$smoking_evernever data: DNAmAge by pheno$smoking_evernever
W = 54, p-value = 0.9725 W = 80, p-value = 0.08452
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Extra: Validation and Replication

ENVIRONMENTAL HEALTH SCIENCES &2



Discovery vs. Replication

Discovery only (single sample analysis)

» Prone to false positive findings (negative too)

Internal Replication

« Sample two or more groups from the same population
« K-fold, leave one out, etc.
« Overall power lower than same-size discovery only

External (Independent) Replication

» Two (or more) independent studies
» Ensure validation + generalizability

Meta-analysis

MAILMAN SCHOOL
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cg00410895 | ©g01727431 ©g04388244 ' 904473763 ]

Cross Platform #
Validation .
Absolute estimates of methylation will ==
differ based on approach

Hope that rank Order StayS the Same § - cg07462448 ! ©g14156792 €g19101893 £g24997886
Sometimes, different platforms / | i
will not correlate | )‘?‘

Less frequent in significant CpGs .

(although it still happens)

B .

Sequenom Data

Wu et al. 2017
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Putting it all
together

Data Preparation

—

| —

Batch adjustment

— Modeling Preparation

} Modeling

A 4

Cell-type adjustment

Interpretation
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Conclusions

1. There are many powerful tools available for EWAS.

2. However, these are not a substitute for good study design, clear hypotheses and a
good understanding of statistics.

3. Be aware of potential pitfalls for regression
4. Be careful in interpretation of findings
5. Always have external replication when possible
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Questions??
Email: ak4181@cumc.Columbia.edu

AIL
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