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Background

 Most PRS models have tuning parameters. These
parameters need to be properly selected in
applications. In practice, they are typically selected
in one of the two ways:
» Cross-validation on the training GWAS samples
» Tune the model on a validation set independent

from the training GWAS

 Whatif all you have is a GWAS summary statistics
file? We introduce PUMAS (Parameter-tuning Using
Marginal Association Statistics), a general statistical
framework to fine-tune PRS models with GWAS
summary statistics.

Methods

 There are two key steps in the PUMAS model-tuning
framework (Figure 1)
» Simulate sumstats for a subset of samples using
the complete sumstats file

» Evaluate model performance using a validation
set of GWAS sumstats
« Simulating sumstats for a subset of samples
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« Calculating predictive R? on the validation sumstats
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Data

 Education attainment (EA): [1] EA3 GWAS from
SSGAC with HRS, Addhealth, WLS, 23&me removed
(N=742,903).[2] HRS samples with EUR ancestry
(N=10,214). [3] AddHealth samples with EUR
ancestry (N=4,775).

« Alzheimer’sdisease (AD): [1] IGAP 2013 GWAS
stage-l analysis (N=54,162).[2] ADGC samples not
used in IGAP 2013 (N=7,050). [3] UKBB GWAS with
an AD-proxy phenotype (N=355,583).

Results
« PUMAS demonstrates highly consistent results
compared with external validations on real GWAS

summary statistics under various genetic architecture.

« PUMAS delivers immediate benefits to downstream
analysis using PRS as inputs.

Have tuning parameters in your polygenic risk score model?

We can perform cross-validation on GWAS summary statistics!

Figure 1. PUMAS workflow. (A) Traditional model tuning approach based on individual-level data (B) Model tuning based on

summary statistics.
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Figure 2. Simulation results. (A and C) PUMAS (B and D) Repeated learning

based on individual-level data. Heritability (h2)=0.2(A-B)/0.8(C-D), number of
causal variants (m)=50/1k/4k, total number of variants (M)=5k, sample size

(N)=100k(A-B)/20k(C-D).
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Figure 3. External validation (A-B) educational attainment (C-D) Alzheimer’s disease. (A and C) PUMAS

(B and D) PRS evaluated on external validation datasets.
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Figure 4. Simulation on WTCCC genotype. (A-B) simple PRS (C-D) LDpred PRS
A  PUMAS B Repeated Learning Figure 6 Identifying.neuroimag.ing. risk.factor.s for AD using fine-tuned and regular PRSs. (A) QQ plot of two approaches,
0.6 respectively (B) consistency of findings in two independent datasets.
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Figure 5. An atlas of optimized PRSs for complex diseases and traits. 45 diseases/traits with optimized

R2 > 0.005 are included. X-axis: Optimal P-value cutoff of PRSs; Y-axis: Predictive R2.
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Conclusion

 We provide an innovative solution to a long-standing
problem - tuning PRS models with GWAS summary
statistics.

 We apply PUMAS to 65 complex diseases and traits.
The average gains in predictive R2 by optimized PRS
are 0.0106 (205.6% improvement) and 0.0034 (62.5%
improvement) compared to PRS with p-value cutoffs
of 0.01 and 1, respectively.

* Sofar, we have used p-value threshold tuning on
pruned sumstats to demonstrate the performance, but
the framework can be generalized to more complex
settings, as shown in Figure 4.

Supplementary Tables and Figures
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Supplementary Figure 1. Improvement of predictive R2 by optimized PRS
compared to PRS with P=0.01 and 1. (A-B) numerical and percentage improvement

N=20,000 N=100,000
h2=0.2 h2=0.8 h2=0.2 h2=0.8
m PUMAS RL PUMAS RL PUMAS RL PUMAS RL
50 35 32 37 37 46 45 45 45
1000 335 266 618 574 662 676 851 763
4000 3589 4799 4754 4009 3758 4660 4262 4214

Supplementary Table 1. Additional simulation results. The number in each cell
denotes the optimal number of variants to include in the PRS model. m: number of
causal variants
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