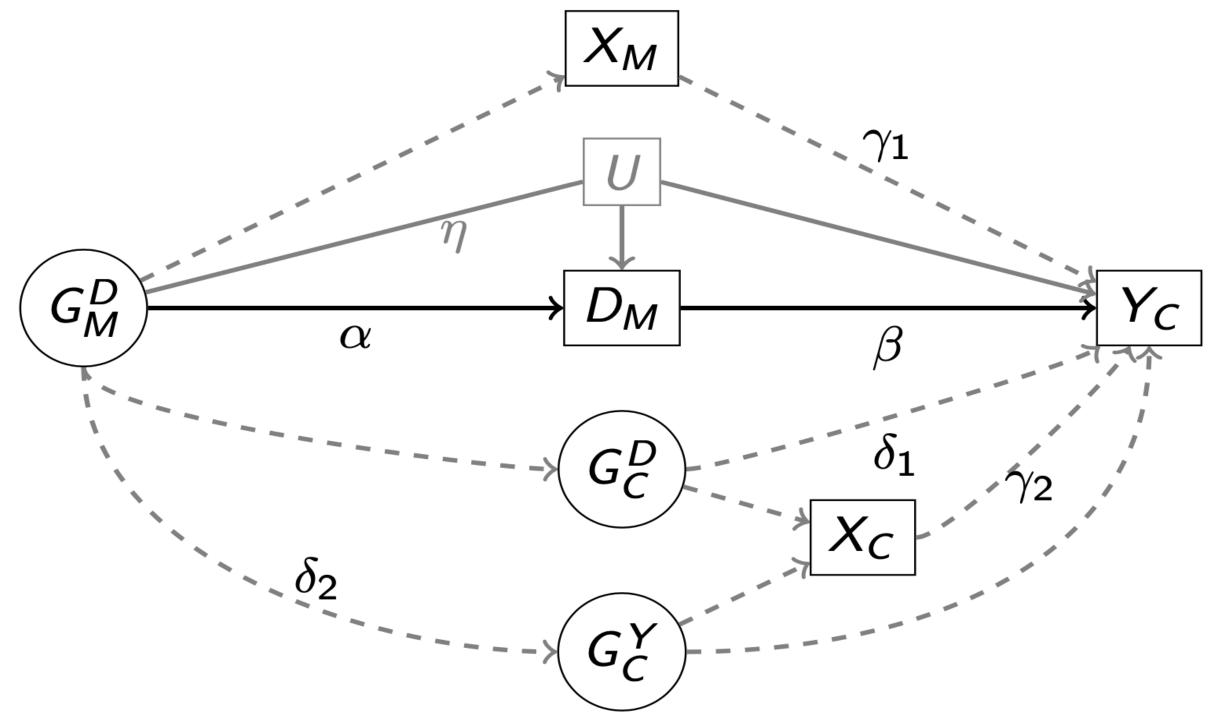
MATERNAL DEPRESSION AND CHILD HUMAN CAPITAL: A GENETIC INSTRUMENTAL VARIABLES APPROACH

Giorgia Menta¹, Anthony Lepinteur¹, Andrew Clark², Simone Ghislandi³, Conchita D'Ambrosio¹ ¹ University of Luxembourg, ² Paris School of Economics, ³ Bocconi University

1. MOTIVATION


- 20% of the UK population suffers from mental health problems (Stansfeld *et al.*, 2016).
- Depression is one of the most predominant.
- Documented correlation between parental depression and child outcomes, but little causal evidence.

RESEARCH QUESTION:

How does maternal depression causally affect children's cognitive and non-cognitive skills?

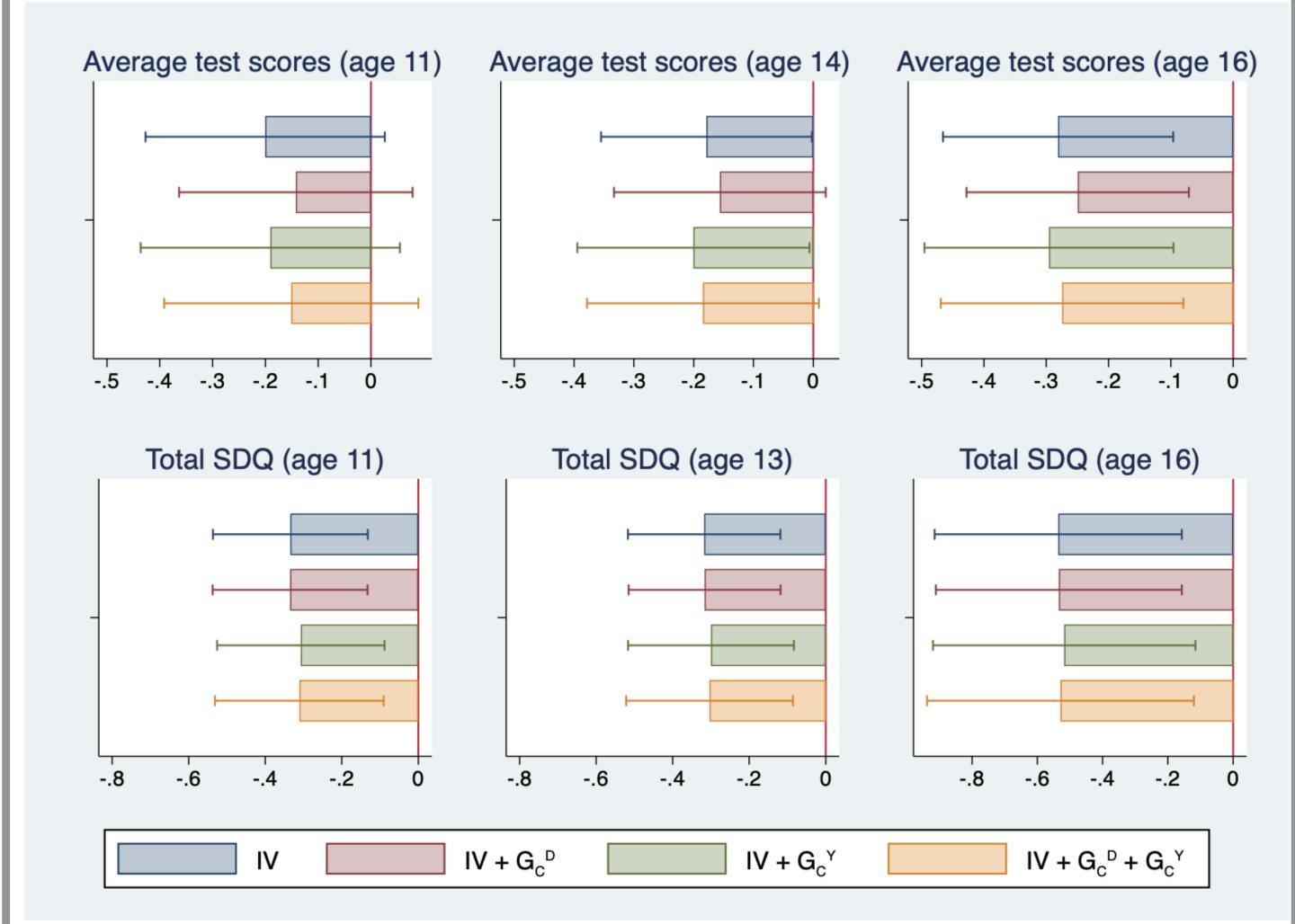
2. AN INTERGENERATIONAL IV SETUP

- Identification strategy based on **Mendelian Randomisation** (MR)
 - Law of Segregation (ML1): Conditional on the parents' genotype, the child's genotype is the result of a random draw;
 - Law of Independent Assortment (ML2): Traits are transmitted independently of each other (unless in LD).
- Assumptions:

- Relevance: $\alpha \neq 0$
 - G_M^D : genetic variants based on evidence from large GWAS.
 - For complex traits, single genetic variants tend to be weak instruments: they can be combined in allelic scores (e.g. PGS).
- Indpendence: $\eta = 0$
 - Homogeneous white-ancestry population
 - But... grandparents? assortative mating?
- **Exclusion restriction**: the instrumental variable G_M^D affects the outcome Y_C only through the exposure D_M

Threats:

- Horizontal pleiotropy: $\gamma_1 \neq 0$
- Genetic inheritance: the transmitted portion of G_M^D could affect Y_C $(\delta_1, \gamma_2, \delta_2 \neq 0)$


3. Data and Main Variables

- The Avon Longitudinal Study of Parents and Children (ALSPAC): about 14,000 pregnant mothers recruited in the early '90s.
 - Wide range of socio-economic and health covariates;
 - DNA genotyping available for a subset of participants.
- Human capital (Y_C) measured as:
 - Cognitive skills: test scores at ages 11, 14, and 16 (admin data);
 - Non-cognitive skills: carer reported total score from the Strengths and Difficulties Questionnaire (SDQ).
- Maternal depression (D_M): times mother felt depressed between child birth and age 9 [scale: 0 to 7].
- Polygenic score (G_M^D): 125/150 independent genetic variants (p-value< 10^{-6}) from meta-analysis on depression (Turley *et al.*, 2018).
- Estimation samples: $\approx 2,000$ to 3,000 observations.

4. MAIN RESULTS

- Baseline IV: one additional episode of maternal depression $\Rightarrow \approx -20\%$ SD for cognitive and $\approx -40\%$ SD for non-cognitive skills.
- Genetic inheritance: baseline IV estimates are robust in smaller samples where we can condition for:
 - G_C^D : the child's PGS for depression;
 - G_C^Y : the child's PGS for cognitive (Demange *et al.*, 2020) or non-cognitive (Middledorp *et al.*, 2016) skills.

Maternal depression $(\widehat{D}_{M}|G_{C}^{D},G_{C}^{Y})$ and child human capital

Notes: bars represent second-stage coefficients for maternal depression. All regressions control for family, child, and mother characteristics. Spikes are for 90% confidence intervals.

5. SENSITIVITY ANALYSIS

Results are robust to a battery of robustness checks:

Measurement of Y_C and D_M

- Non-cognitive skills
 - Convergent validity using other measures of socio-emotional development (e.g. SMFQ);
 - Cross-rater validity: teacher vs main-carer;
 - Sub-dimensions of non-cognitive: internalising vs externalising.
- Cognitive skills
 - Testing separately for Math, English, and Science
- Maternal depression
 - Depression as a binary indicator: ever depressed, recent depression;
 - Depression before and after the child entering compulsory education;
 - Excluding post-natal depression.

Exclusion restriction

- Pleiotropy
 - Test for the absence of systematic correlation between PGS and other maternal traits;
 - Biological annotation: exclude SNPs linked to (or in LD with) education and/or other traits;
 - Control for the mother's PGS for cognitive and non-cognitive skills (GIV-U, DiPrete *et al.*, 2018);
 - Sensitivity to controlling for a wide range of maternal traits.
- Genetic inheritance
 - Genetic overlap: exclude SNPs in LD with cognitive (Demange et al., 2020) or non-cognitive (Middledorp et al., 2016) skills;
 - Control for the child's PGS for cog and non-cog (see Main Results section).
- *Plausible exogeneity*: results survive violations of the exclusion restriction up to:
 - -40% of the instrument's reduced form effect (non-cognitive);
 - -10% to 40% of the instrument's reduced form effect (cognitive).

Independence assumption

- Despite the low degree of population stratification in ALSPAC, there might be other threats:
 - U includes **grandparent's depression** (η is genetic inheritance):
 - * Results are robust to grandparental controls.
 - U includes **partner's traits** (η is assortative mating): results are robust to controlling for:
 - Partner's education (included in all specifications);
 - * Partner's depression.

6. CONCLUSIONS

- We here show that maternal depression negatively affects the cognitive development of adolescents. Effects are larger and more precisely estimated for non-cognitive outcomes.
- Combined with studies finding little benefits of treating maternal depression on child outcomes (e.g. Baranov et al., 2020), our results showing a large scarring effect of maternal depression suggest that prevention, rather than treatment, might have larger societal returns.