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Deconstructing the sources of genotype-
phenotype associations
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Young et al., Deconstructing the sources of genotype-phenotype associations in humans. Science (2020)



Separating out direct genetic effects

The transmission disequilibrium test (TDT):

Expected proportion  50% 50%
in offspring

Observed proportion 60% 40%
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The nature of nurture:
Effects of parental genotypes

Augustine Kong,?** Gudmar Thorleifsson,” Michael L. Frigge,’

Bjarni J. Vilhjalmsson,*® Alexander |. Young,"?*® Thorgeir E. Thorgeirsson,’
Stefania Benonisdottir,” Asmundur Oddsson," Bjarni V. Halldorsson," Gisli M asson,’
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Sequence variants in the parental genomes that are not transmitted to a child (the
proband) are often ignored in genetic studies. Here we show that nontransmitted alleles
can affect a child through their impacts on the parents and other relatives, a phenomenon
we call “genetic nurture’” Using results from a meta-analysis of educational attainment,
we find that the polygenic score computed for the nontransmitted alleles of 21637 probands
with at least one parent genotyped has an estimated effect on the educational attainment
of the proband that is 29.9% (P = 16 x 10~ ™) of that of the transmitted polygenic score.
Genetic nurturing effects of this polygenic score extend to other traits. Paternal and maternal
polygenic scores have similar effects on educational attainment, but mothers contribute
more than fathers to nutrition- and heath-related traits.



Direct and indirect effects of educational
attainment polygenic score

(Score constructed from Okbay et al. 2016)

R0 R} 00

Educational 4.98 2.45
attainment
Age at first 1.17 0.48
child
Health 0.67 0.23

(composite)

Kong et al., The Nature of Nurture: effects of parental genotypes. Science (2018)
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Variance decomposition
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Heritability Estimation
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Relatedness disequilibrium regression estimates
heritability without environmental bias

Alexander I. Young @'23* Michael L. Frigge @', Daniel F. Gudbjartsson ©®'4, Gudmar Thorleifsson’,
Gyda Bjornsdottir!, Patrick Sulem®, Gisli Masson', Unnur Thorsteinsdottir, Kari Stefansson'®
and Augustine Kong ©®1"34*

Heritability measures the proportion of trait variation that is due to genetic inheritance. Measurement of heritability is impor-
tant in the nature-versus-nurture debate. However, existing estimates of heritability may be biased by environmental effects.
Here, we introduce relatedness disequilibrium regression (RDR), a novel method for estimating heritability. RDR avoids most
sources of environmental bias by exploiting variation in relatedness due to random Mendelian segregation. We used a sample
of 54,888 Icelanders who had both parents genotyped to estimate the heritability of 14 traits, including height (55.4%, s.e.
4.4%) and educational attainment (17.0%, s.e. 9.4%). Our results suggest that some other estimates of heritability may be
inflated by environmental effects.
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|dentity-by-descent (IBD)
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Genotypic covariance between individuals

COV(gi,gj) — ?

Assume that (J; — (5 when both inherited from recent
common ancestor (identical-by-descent, IBD)

Assume that  (; J_gj when not identical by descent

Cov(gi,g5) =2f(1— )R,
T

Relatedness between pair



Relatedness coefficient
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Covariance decomposition into inherited
and non-inherited components
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Covariance decomposition into inherited
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Relatedness Disequilibrium Regression

“True’ covariance model:
COV(Y) — ng + UBNngar + Cg,eRO’par + COV(E)

RDR covariance model

COV(Y) = ng ~+ UBNngar + Cg,eRO’par + O-ZI

Theorem
The estimator of the genetic variance from the RDR model converges to
the true heritability

Ug > Ug



Relatedness Disequilibrium
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Selected estimates

RDR
Trait h? (S.E.) (%)
BMI 28.9 (6.3)
height 55.4 (4.4)

education 17.0 (9.4)



Comparison to Kinship (F.E.) Estimator
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Comparison to Swedish Twin Studies
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Overestimation of heritability by GREML methods
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Problem: parental genotypes often missing

Complete Data Sibs only Parent-offspring
Ml w D | (i
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Kong et al., Family analysis with Mendelian Imputations, biorXiv 2020



Imputation from siblings using IBD
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Imputation from parent-offspring pairs

mother
AlT
father
observed j|> Al?
Al A imputed
offspring

With double het resolved by phase:

Var(gpi)) = f(1 — f) = Var(gy))/2



Imputation for multiple regression

Model

Yi = 09; + AmGm(i) + Qpgp(i) T+ €

Regression with imputed paternal genotype

Yi ~ Gi T Gm(i) T Ip(i) — 0y Qm, Ol

Imputation gives unbiased estimates!



Efficiency relative to both parents observed
(direct effects)
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Estimating effects from siblings

Correlated with parental genotype
A

Between
family
genetic
differences

Uncorrelated with parental
genotype

»

Within-family genetic differences

Orthogonal axes of information for estimation of direct genetic effects



Estimating effects from siblings
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Estimating effects from siblings
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Relative effective sample size (direct)

Estimating effects from siblings
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Mixed model regression

Yij = Xija + u; + €55 u;~N(0,07); €;~N(0,08);

| |

Family level Individual error
random effect term

Genotype matrix with
columns: Proband,
(imputed) paternal,
(imputed) maternal

Fast imputation and mixed model regression code in SNIPar (single nucleotide imputation of
parents) software package: https://github.com/AlexTISYoung/SNIPar



https://github.com/AlexTISYoung/SNIPar

Gain in effective sample size (direct effects) over no imputation
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How much bias does GWAS have?

Model

Yi = 09;i + QunGm (i) T QpJp(i) + €

Standard GWAS picks up ‘parental effects’

Y ~g = B—=0+ (ap+am)/2

‘Population effect’

What is the correlation of direct and population effect?

Corr(0,0 + (ap + ) /2) =7



Correlation between direct and population effects
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Application to PGS analyses
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Using EA PGS. Note that assortative mating leads to slight bias in parental effect estimates.
(Kong et al. Family Analysis with Mendelian Imputations, biorXiv 2020).
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