Environmental Moderators of Genetic Risk for Depression among Older US Adults: Evidence from the Wisconsin Longitudinal Study

Jinyuan Qi

OPR, Princeton University

Oct 4th

- Increasing burden of depression among the older adults in the US.
- Current understanding of depression? Gene-environment interaction?
- Interaction terms in linear regression products of original variables
- Two-way interaction: $\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$
- Three-way interaction: $\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3 + \beta_6 X_2 X_3 + \beta_7 X_1 X_2 X_3$

- Failing to account for interaction effects
- Versus introducing too many interaction terms
- Large p, Small n problems in longitudinal survey data (e.g., WLS has 10,000+ graduates and 15,000+ variables).
- Exploratory data analysis machine learning methods can help select important predictors and identify important interactions.

Decision trees - Model-based recursive partitioning

• Tree: leaves represent class labels & branches represent conjunctions of features that lead to those class labels.

- Split function chooses the best feature & the best value for that feature to minimize cost function (e.g., MSE)
- Recursive partitioning function

- Tree models are unstable
- Predictions are very sensitive to small changes to inputs.
- Random forests for variable selection: multiple trees constructed on random samples achieved either through bootstrapping or sub-sampling.

The mobForest package

The mobForest package constructs large number of model-based trees and the predictions are aggregated across these trees resulting in more stable predictions with variable importance.

Data - Wisconsin Longitudinal Study

- A one-third sample of all 1957 Wisconsin high school graduates (Three waves 1993, 2004, & 2011)
- **Outcome:** a summary CES-D score (0-60) for depression that uses consistent CES-D questions.
- **PGS**: MTAG (Multi-Trait Analysis of GWAS)-based Polygenic Scores for Depression were created by Turley et al (2018)¹ using LDpred.

$$\overline{y} = \sum_{j=1}^{k} x_{ij} w_j$$

• Various risk factors: e.g., education, marital status, wealth, etc.

¹Turley et al. "Multi-trait analysis of genome-wide association summary statistics using MTAG". In: *Nature Genetics* 50.2 (2018), pp. 229–237.

Regressors' coefficients in MOB Tree

First MOB Tree - 45 nodes			Pruned MOB Tree - 21 nodes			Pruned Tree including		
						wave as regressor - 17 nodes		
Node	(Intercept)	PGS	Node	(Intercept)	PGS	Node	(Intercept)	PGS
7	9.662^{***}	-7.682	6	8.872***	-5.844*	7	9.864^{***}	-7.152*
8	7.928***	-4.214	7	7.254^{***}	1.159	8	7.842***	-2.796
9	7.254***	1.159	8	10.632^{***}	-11.164**	9	7.256^{***}	-2.651*
10	10.632^{***}	-11.164^{**}	12	7.322***	-3.079	10	10.857^{***}	-1.388
15	7.171^{***}	-3.697	13	6.067^{***}	-3.664**	11	11.173^{***}	-8.474***
16	10.483^{***}	-16.327	14	8.203***	-0.804	13	5.941^{***}	-4.424***
19	6.880^{***}	18.635^{**}	15	8.087***	-6.051*	14	8.121***	-4.384
20	6.160^{***}	-4.706**	17	6.332^{***}	-5.824**	16	15.125^{***}	-14.330**
22	6.376^{***}	-7.709*	18	4.660^{***}	-3.404*	17	11.661^{***}	-16.467^{***}
23	4.616^{***}	-4.330	20	14.174^{***}	-19.225***	Same Tree as above		
25	8.258***	-5.645	21	10.886^{***}	-11.241***	Node	Y2004	Y2011
26	6.815^{***}	-0.480				7	-3.443***	-1.257
28	8.399***	25.692^{***}				8	-1.426^{***}	-1.568^{***}
29	8.578***	-11.494**				9	-1.637^{***}	-0.781**
33	5.994^{***}	-4.412^{*}				10	-2.929**	-1.938*
34	10.858^{***}	-22.463				11	-2.515^{***}	-2.311***
35	10.990^{***}	-31.153^{*}				13	-1.667^{***}	-1.393***
37	4.408^{***}	-3.283*				14	-2.217^{***}	-2.422***
38	6.413^{***}	-4.553				16	-2.949^{**}	-1.208
40	14.174^{***}	-19.225				17	-2.425^{**}	0.322
42	12.122^{***}	-10.694						
44	9.366***	-10.522^{**}						
45	14.241^{***}	-18.690						
Note: *** <0.001 ** <0.01 * <0.05								

Tree example: Pruned MOB Tree - 21 nodes

Variable Selection from Random Forest

- Self-rated health and physical illness and assets have greater importance in predicting CES-D scores than other variables for selection.
- The negative association is especially significant among those more disadvantaged subgroups with worse self-rated health, more illnesses, unmarried and less assets with higher intercept values.
- Gene-environment interactions could be very complex and multidimensional with multiple pathways and offsetting effects.
- Simply association no causal inference (e.g., confounder, collider, etc.)
- The machine learning methods can be combined with other statistical methods to discover patterns and select features.

Thank you!

Jinyuan Qi (OPR, Princeton Universi

IGSS 2019

Oct 4th 11 / 14

Grow a tree to explore different associations between PGS and depression among different subgroups:

- Fit a parametric model to all
- **2** Test for parameter instability
- If there is some overall parameter instability, split the model by the variable with the highest instability
- Repeat the procedure at each of the child nodes.

The party package with mob

- Check overall instability the minimal p value $< \alpha$ level
- Greedy algorithm models are fit at every conceivable split point exhaustively

Tree example: Pruned MOB Tree including *wave* as regressor - 17 nodes

Decision trees² - recursive partitioning algorithm

• Split function chooses the best feature & the best value for that feature:

 $(j^*, t^*) = \arg\min_{j \in \{1, \dots, D\}} \min_{t \in T_j} cost(\{x_i, y_i : x_{ij} \le t\}) + cost(\{x_i, y_i : x_{ij} > t\})$

• Pseudo codes for recursive partitioning function:

1 function fitTree(node, \mathcal{D} , depth) ; 2 node.prediction = mean($y_i : i \in \mathcal{D}$) // or class label distribution ; 3 $(j^*, t^*, \mathcal{D}_L, \mathcal{D}_R) = \operatorname{split}(\mathcal{D})$; 4 **if** not worthSplitting(depth, cost, $\mathcal{D}_L, \mathcal{D}_R$) **then** 5 $\$ return node 6 **else** 7 node.test = $\lambda \mathbf{x} . x_{j^*} < t^*$ // anonymous function; 8 node.left = fitTree(node, \mathcal{D}_L , depth+1); 9 node.right = fitTree(node, \mathcal{D}_R , depth+1); 10 return node;

²Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.