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In three parts

* Why genetic ancestry impacts prediction accuracies
* Prediction accuracy can vary, a lot, even within an ancestry

 GWAS signals need to be deconstructed to understand what is going
on
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Fig. 3 | Prediction accuracy relative to European-ancestry individuals
across 17 quantitative traits and 5 continental populations in the UKBB.

Martin et al., 2019



What is going on?

Population genetic explanations

Linkage disequilibrium patterns differ
among populations

Allele frequencies change over time
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Figure 3 | Major human migrations across the world inferred through
analyses of genomic data. Some migration routes remain under debate.
For example, there is still some uncertainty regarding the migration
routes used to populate the Americas. Genomic data are limited in their
resolution to determine paths of migration because further population

movements, subsequent to the initial migrations, may obscure the
geographic patterns that can be discerned from the genomic data
Proposed routes of migration that remain controversial are indicated
by dashed lines Central Anatolia; FC, Fertile Crescent; IP, Iberian
Peninsula; PCS, Pontic-Caspian steppe.

Nielsen et al. 2017



IS going on?

What
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Linkage disequilibrium patterns differ

among populations
Allele frequencies change over time

Population genetic explanations

Meta-analysis of Wood et al. (2014)

with GWAS of height in UK Biobank
(N-693,529)
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= Polygenic scores will diverge by genetic drift alone

Genetic variance explained decreases with Fst
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variant j on the phenotype correlated trait) is under selection




Population genetic explanations

Linkage disequilibrium patterns differ
among populations

Allele frequencies change over time
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matched sample sizes
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What is going on?

PopulatiOS&netic exp@tions

Linkage disequili

riym patterns differ
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Other possibilities

Differences in Ve y=px+ e
Gene by environment interactions
Population stratifi

See Berg et al. 2019; Sohail et al. 2019;
Nordborg et al. 2019
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Using the UK Biobank

e 340K unrelated “White British” individuals

“White British”
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Example 1: prediction accuracy of blood pressure by sex

Diastolic blood pressure

GWAS
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Example 1: prediction accuracy of blood pressure by sex
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Prediction accuracy depends on characteristics

of both GWAS and prediction set
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Prediction accuracy depends on characteristics

of both GWAS and prediction set

A. Diastolic blood pressure
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Example 2: Prediction accuracy for BMI

varies by age group
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Example 3: Prediction accuracy for years of schooling

varies by socioeconomic status (SES)

Prediction accuracy
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Robust to various sensitivity analyses:

method and parameters used for GWAS

method and parameters to build polygenic score

Metric to evaluate prediction accuracy

Disease/binary phenotypes; not just continuous phenotypes

heart attack or angina or stroke
Prevalence: male (0.086), female (0.033)
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Prediction accuracy depends on sample characteristics

For many traits,
we do not know what sample characteristics matter.



What is going on in these examples?

A_ Diastolic blood pressure
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Prediction accuracies track (SNP) heritabilities

Diastolic blood pressure
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Simplest possibility: heritabilities vary across strata because the
environmental variance does
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Heritability

Are the heritabilities across strata reflecting different
environmental variances?
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Not just a difference in environmental variances

Diastolic blood pressure
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What is going on in these examples?

A. Diastolic blood pressure
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GWAS pick up more than just direct genetic effects

indirect genetic effects

assortative mating

environmental confounding

direct genetic effects

— polygenic score




Example: GWAS also pick up indirect genetic effects

Y - studied trait
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Example: GWAS also pick up indirect genetic effects
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Example: GWAS also pick up indirect genetic effects

Y - studied trait ——  Birth weight

)

A

Warrington et al. 2019



indirect genetic effects

assortative mating

environmental confounding

direct genetic effects
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Do these other effects contribute?

>

phenotype genotype € {0,1,2}
—> Standard GWAS: y=pPx+ €
Sib-based GWAS: Ay = BAx + Ae
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Standard GWAS |[& === = — = — -»| Sib-GWAS
(n* unrelateds) (20K sib pairs)

Prediction in unrelated individuals of
same ancestries




matched
sampling error
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if non-direct genetic effects also present




Pack years of smoking-
Household income=
Years of schooling™

Age at first sex-
Overall health rating-
Fluid intelligencen
Alcohol intake frequency™
Neuroticism score
Birth weight+

Forced vital capacity
Waist circumference
Hand grip strength+
Height~

Basal metabolic rate
Hip circumference
BMI+

Skin color+

ofil oo

CXERY T1

o o .

. X

o =

| Hair color+

Diastolic blood pressure -
Pulse rate+

¥

0.0

0.5

1.0

Ratio of prediction accuracies
(sib—based / standard)

—

Standard GWAS
outperforms

1.5




Pack years of smoking-
Household income=
Years of schooling™

Age at first sex-

Overall health rating-
Fluid intelligencen
Alcohol intake frequency™
Neuroticism score

Birth weight+

Forced vital capacity
Waist circumference
Hand grip strength 4

Height

Basal metabolic rate
Hip circumference

BMI+

Skin color=

Hair color+

Diastolic blood pressure -
Pulse raten

0.0

0.5

1.0

Ratio of prediction accuracies
(sib—based / standard)

—

Standard GWAS
outperforms

1.5




Pack years of smoking-

Years of schooling+ ol o

Age at first sex-

Overall health rating-
Fluid intelligencen
Alcohol intake frequency+
Neuroticism score

Birth weight+

Forced vital capacity
Waist circumference
Hand grip strength+
Height=

Basal metabolic rate
Hip circumference

BMI+

Skin color=

Hair color+

Diastolic blood pressure -
Pulse rate+

CXERY T1

0.0

0.5

1.0

(sib—based / standard)

—

Standard GWAS
outperforms

Ratio of prediction accuracies

1.5

indirect genetic effects

assortative mating

environmental confounding

direct genetic effects

—



Pack years of smoking- - I -+
Household income= - - <=
Years of schooling+ ol o
Age at first sex- o oo oo .
Overall health rating- .o o e e
Fluid intelligencen LR UL, o - .
Alcohol intake frequency™ oo ok e LR
Neuroticism score+ s o ik - . .
Birth weight+ o ol 4 e
Forced vital capacity o -
Waist circumference ool - .
Hand grip strength - oollh of oo
Height= -
Basal metabolic rate o =
Hip circumference .o .
BMI . om .
Skin color+
Hair color+
Diastolic blood pressure - v oooffier s o
Pulse rate vooe R e

0.0 0.5 1.0 15

Ratio of prediction accuracies
(sib—based / standard)

For many traits, PGS are not just direct genetic effects...
Do these port across cultures/environments, within an ancestry?



How do we know this is mostly about genetic ancestry?
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Fig. 3 | Prediction accuracy relative to European-ancestry individuals
across 17 quantitative traits and 5 continental populations in the UKBB. All
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