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In three parts

• Why genetic ancestry impacts prediction accuracies

• Prediction accuracy can vary, a lot, even within an ancestry

• GWAS signals need to be deconstructed to understand what is going
on
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traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  
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Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n!= !288,978). The x!axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition Individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0
 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1
 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5
 Any of the five diseases 57,115/288,978 19.8
Odds ratio ≥4.0

 CAD 6,631/288,978 2.3
 Atrial fibrillation 4,335/288,978 1.5
 Type 2 diabetes 578/288,978 0.2
 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3
 Any of the five diseases 14,029/288,978 4.9
Odds ratio ≥5.0

 CAD 1,443/288,978 0.5
 Atrial fibrillation 2,020 288,978 0.7
 Type 2 diabetes 144/288,978 0.05
 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.
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Martin et al., 2019



What is going on?

Population genetic explanations

Linkage disequilibrium patterns differ
among populations
Allele frequencies change over time

Nielsen et al. 2017
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Nielsen et al. 2017



Pickrell & Pritchard 2012

~ Fst

Þ Polygenic score will also diverge if the trait (or a 
correlated trait) is under selection

Þ Polygenic scores will diverge by genetic drift alone

Genetic variance explained decreases with Fst



Population genetic explanations

Linkage disequilibrium patterns differ
among populations
Allele frequencies change over time

Nielsen et al. 2017



Martin et al., 2019

matched sample sizes

GWAS in the UK GWAS in Japan



What is going on?

Population genetic explanations Other possibilities

Linkage disequilibrium patterns differ Differences in Ve
Allele frequency changes Gene by environment interactions

Population stratification 

! = #$% + '

See Berg et al. 2019; Sohail et al. 2019; 
Nordborg et al. 2019
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“White British”

non-”White British”

Using the UK Biobank

• 340K unrelated “White British” individuals

• 20K sibling pairs



Diastolic blood pressure

GWAS
(120K men + 120K women)

Prediction
(20K men)

Prediction
(20K women)

Example 1: prediction accuracy of blood pressure by sex
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Prediction accuracy depends on characteristics
of both GWAS and prediction set
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matched for 
sample size

Prediction accuracy depends on characteristics
of both GWAS and prediction set



Example 2: Prediction accuracy for BMI
varies by age group
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Example 3: Prediction accuracy for years of schooling
varies by socioeconomic status (SES) 
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Robust to various sensitivity analyses:

- method and parameters used for GWAS

- method and parameters to build polygenic score

- Metric to evaluate prediction accuracy

- Disease/binary phenotypes; not just continuous phenotypes

GWAS in 
men
GWAS in 
women



For many traits, 
we do not know what sample characteristics matter.

Prediction accuracy depends on sample characteristics



What is going on in these examples?



Prediction accuracies track (SNP) heritabilities
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Simplest possibility: heritabilities vary across strata because the 
environmental variance does
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Expectation under
changes in Ve alone

Greater phenotypic variance => lower 
heritability

Are the heritabilities across strata reflecting different 
environmental variances?
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Not just a difference in environmental variances
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• Genetic effects highly
correlated across strata

• Genetic amplification in 
some strata?



What is going on in these examples?



GWAS pick up more than just direct genetic effects

indirect genetic effects

assortative mating

environmental confounding

direct genetic effects
polygenic score



Example: GWAS also pick up indirect genetic effects

direct

indirect



Example: GWAS also pick up indirect genetic effects

direct

indirect



Example: GWAS also pick up indirect genetic effects

Birth weight

(partly) Maternal blood pressure

Warrington et al. 2019



indirect genetic effects

assortative mating

environmental confounding

direct genetic effects

Stulp et al. 2016

In culture A In culture B

PGS



Do these other effects contribute?

Standard GWAS:                 ! = #$% + '

Sib-based GWAS: Δ! = #$Δ% + Δ'

genotype ∈ {0,1,2}phenotype



Sib-GWAS
(20K sib pairs)

Prediction in unrelated individuals of  
same ancestries

Standard GWAS
(n* unrelateds)



Standard R2 = Sib-based R2

Under the null

Sib-GWAS
(20K sib pairs)

Standard GWAS
(n* unrelateds)

matched 
sampling error



Standard R2 > Sib-based R2

if non-direct genetic effects also present

Sib-GWAS
(20K sib pairs)

Standard GWAS
(n* unrelateds)

matched 
sampling error



Standard GWAS 
outperforms



Standard GWAS 
outperforms



Standard GWAS 
outperforms



For many traits, PGS are not just direct genetic effects…
Do these port across cultures/environments, within an ancestry?



How do we know this is mostly about genetic ancestry?
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