Beyond ancestry: the many factors influencing the portability of polygenic scores

Molly Przeworski

Dept. of Biological Sciences Dept. of Systems Biology Columbia University

In three parts

- Why genetic ancestry impacts prediction accuracies
- Prediction accuracy can vary, a lot, even within an ancestry
- GWAS signals need to be deconstructed to understand what is going on

Polygenic scores

Polygenic scores

Prediction accuracy :

Corr (PGS, trait value)

In human genetics

In population genetics

Fig. 3 | Prediction accuracy relative to European-ancestry individuals across 17 quantitative traits and 5 continental populations in the UKBB.

Martin et al., 2019

What is going on?

Population genetic explanations

Linkage disequilibrium patterns differ among populations

Allele frequencies change over time

Figure 3 | Major numan migrations across the world interred utrough analyses of genomic data. Some migration routes remain under debate. For example, there is still some uncertainty regarding the migration routes used to populate the Americas. Genomic data are limited in their resolution to determine paths of migration because further population movements, subsequent to the initial migrations, may obscure the geographic patterns that can be discerned from the genomic data. Proposed routes of migration that remain controversial are indicated by dashed lines. CA, Central Anatolia; FC, Fertile Crescent; IP, Iberian Peninsula; PCS, Pontic-Caspian steppe.

Nielsen et al. 2017

What is going on?

Population genetic explanations

Linkage disequilibrium patterns differ among populations

Allele frequencies change over time

Figure 3 | Major human migrations across the world inferred through analyses of genomic data. Some migration routes remain under debate. For example, there is still some uncertainty regarding the migration routes used to populate the Americas. Genomic data are limited in their resolution to determine paths of migration because further population movements, subsequent to the initial migrations, may obscure the geographic patterns that can be discerned from the genomic data. Proposed routes of migration that remain controversial are indicated by dashed lines. CA. Central Anatolia; FC, Fertile Crescent; IP, Iberian Peninsula; PCS, Pontic–Caspian steppe.

Nielsen et al. 2017

\Rightarrow Polygenic scores will diverge by genetic drift alone

Genetic variance explained decreases with Fst

⇒ Polygenic score will also diverge if the trait (or a correlated trait) is under selection

Population genetic explanations

Linkage disequilibrium patterns differ among populations

Allele frequencies change over time

Figure 3 | Major human migrations across the world inferred through analyses of genomic data. Some migration routes remain under debate. For example, there is still some uncertainty regarding the migration routes used to populate the Americas. Genomic data are limited in their resolution to determine paths of migration because further population movements, subsequent to the initial migrations, may obscure the geographic patterns that can be discerned from the genomic data. Proposed routes of migration that remain controversial are indicated by dashed lines. CA, Central Anatolia; FC, Fertile Crescent; IP, Iberian Peninsula; PCS, Pontic-Caspian steppe.

Nielsen et al. 2017

Martin et al., 2019

What is going on?

Population genetic explanations

Linkage disequilibrium patterns differ Allele frequency changes Other possibilities

Differences in Ve

```
y = \hat{\beta}x + \epsilon
```

Gene by environment interactions

Population stratification

See Berg et al. 2019; Sohail et al. 2019; Nordborg et al. 2019

Dalton Conley

Jonathan Pritchard

Hakhamanesh Mostafavi

Arbel Harpak

Using the UK Biobank

- 340K unrelated "White British" individuals
- 20K sibling pairs

Example 1: prediction accuracy of **blood pressure** by **sex**

Example 1: prediction accuracy of **blood pressure** by **sex**

Prediction accuracy depends on characteristics of both GWAS and prediction set

Prediction accuracy depends on characteristics of both GWAS and prediction set

Prediction accuracy depends on characteristics of both GWAS and prediction set

Example 2: Prediction accuracy for **BMI** varies by **age group**

Example 3: Prediction accuracy for **years of schooling** varies by **socioeconomic status (SES)**

Robust to various sensitivity analyses:

- method and parameters used for **GWAS**
- method and parameters to build **polygenic score**
- Metric to evaluate prediction accuracy
- **Disease/binary phenotypes;** not just continuous phenotypes

Prediction accuracy depends on sample characteristics

For many traits, we do not know what sample characteristics matter.

What is going on in these examples?

Prediction accuracies track (SNP) heritabilities

Simplest possibility: heritabilities vary across strata because the environmental variance does

$$R^2 \propto \frac{Vg}{Vp} = \frac{Vg}{Vg + Ve}$$

Are the heritabilities across strata reflecting different environmental variances?

Not just a difference in environmental variances

- Genetic effects highly correlated across strata
- Genetic amplification in some strata?

What is going on in these examples?

GWAS pick up more than just direct genetic effects

Example: GWAS also pick up indirect genetic effects

Example: GWAS also pick up indirect genetic effects

Example: GWAS also pick up indirect genetic effects

Warrington et al. 2019

Stulp et al. 2016

Do these other effects contribute?

Pack years of smoking-						
Household income						
Years of schooling						
Age at first sex-			••			
Overall health rating-		• • • •	•• • •			
Fluid intelligence		- ••• •		- • ••	•	
Alcohol intake frequency-		• - • -		• -•		
Neuroticism score-			- •- •		••	
Birth weight			••••	• -• -•		
Forced vital capacity-			• • • • • • • • • •	+		
Waist circumference						
Hand grip strength -				• • •		
Height-						
Basal metabolic rate						
Hip circumference -						
BMI-				••		
Skin color-				•		
Hair color-						
Diastolic blood pressure-						
Pulse rate				••••• 🗰•	••	
	0.0	0.5	1	.0	1.5	
Ratio of prediction accuracies						
	(sib-based / standard)					
	-					
Standard CMAS						
Stanuaru GWAS						
outperforms						
			-			

Pack years of smoking-						
Household income						
Years of schooling		•				
Age at first sex-		•	• •			
Overall health rating-	•-	•	•• ••			
Fluid intelligence		- •• • •			••••••	
Alcohol intake frequency-			• • •	• -•		
Neuroticism score-		• • •	• • • •		••	
Birth weight			••••	••		
Forced vital capacity-						
Waist circumference			• • • • • • • • • • • •			
Hand grip strength-				••-••		
Height-						
Basal metabolic rate				•		
Hip circumference-						
BMI-						
Skin color-						
Hair color-				.		
Diastolic blood pressure-						
Pulse rate					•••	
	0.0	0.5	1	0.1	1.5	
		Ratio of	prediction	accurac	cies	
(sib-based / standard)						
	•					
		•				
	Star	ndard GV	VAS			
	~	itporfor	mc			
	υ	icperiori	112			

For many traits, PGS are not just direct genetic effects... Do these port across cultures/environments, within an ancestry?

How do we know this is mostly about genetic ancestry?

Fig. 3 | Prediction accuracy relative to European-ancestry individuals across 17 quantitative traits and 5 continental populations in the UKBB. All

Helpful discussions with:

Hakhamanesh Mostafavi

Arbel Harpak

Ipsita Agarwal Dalton Conley

Jonathan Pritchard

Doc Edge	Itsik Pe'er
Guy Sella	Ziyue Gao
Przeworski & Sella lab members	Augie Kong
Graham Coop	Alex Young
Magnus Nordborg	Dan Belsky

SIMONS FOUNDATION

