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• Follows	health	and	well-being	of	500,000	participants
• Genotyped	using	the	Affymetrix Biobank	Array
• Lots	of	phenotypes	collected	[needs	harmonization]
• Lots	of	opportunity!



Data	showcase
http://biobank.ctsu.ox.ac.uk/crystal/



Sex	distribution



Age	distribution	at	recruitment

Mean = 56.5286
Std.dev = 8.09516



Example	self-report



PHESANT!

Copious thanks to Millard LAC, Davies NM, Gaunt TR, Davey Smith G, Tilling K. PHESANT: 
a tool for performing automated phenome scans in UK Biobank. bioRxiv (2017)



What’s	on	the	array?

6		

Figure	1	|	Summary	of	UK	Biobank	genotyping	array	content.		This	is	a	schematic	representation	of	
the	different	categories	of	content	on	the	UK	Biobank	Axiom	array.		Numbers	indicate	the	
approximate	count	of	markers	within	each	category,	ignoring	any	overlap.		A	more	detailed	
description	of	the	array	content	is	available	in	[7].	

	

2.1.2 DNA	extraction	and	genotype	calling	

Blood	samples	were	collected	from	participants	on	their	visit	to	a	UK	Biobank	
assessment	centre	and	the	samples	are	stored	at	the	UK	Biobank	facility	in	
Stockport,	UK	[18].	Over	a	period	of	18	months	(Nov.	2013	–	Apr.	2015)	samples	
were	retrieved,	DNA	was	extracted,	and	96-well	plates	of	94	50μl	aliquots	were	
shipped	to	Affymetrix	Research	Services	Laboratory	for	genotyping.		Special	
attention	was	paid	in	the	automated	sample	retrieval	process	at	UK	Biobank	to	
ensure	that	experimental	units	such	as	plates	or	timing	of	extraction	did	not	
correlate	systematically	with	baseline	phenotypes	such	as	age,	sex,	and	ethnic	
background,	or	the	time	and	location	of	sample	collection.	Full	details	of	the	UK	
Biobank	sample	retrieval	and	DNA	extraction	process	are	described	in	[19,	20].		
	
On	receipt	of	DNA	samples,	Affymetrix	processed	samples	on	the	GeneTitan®	Multi-
Channel	(MC)	Instrument	in	96-well	plates	containing	94	UK	Biobank	samples	and	

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/166298doi: bioRxiv preprint first posted online Jul. 20, 2017; 

Imputed to HRC



Round	1	GWAS

• Last	fall,	the	Neale	lab…
– GWASed 2,419	phenotypes

• Blogged	about	it
• Put	them	on	dropbox

– And	people	made	browsers
– Estimated	h2 for	all	of	them
– Made	an	h2 browser

• Blogged	about	that	too

Nealelab.is/blog



Scalability



Scalability

1hr



Scalability

1.1 hr



Association	results	for	many	things!
Taking	cholesterol	lowering	meds

GLGC Nat Genet

Genetic correlation of  0.47 with LDL, 0.58 
with triglycerides and 0.51 with total 

cholesterol



6	months	later,	we	did	it	all	again



Why	Round	2	of	UKB	GWAS?

• Missing	a	batch	of	imputed	SNPs
– Corrected	data	released	in	March

• Hadn’t	gotten	permissions	for	all the	phenotypes
– Expanded	UKB	application

• Feedback	on	improvements	for	the	GWAS
– Age,	sex,	stratification



Round	2:	QC	Updates

• Variant	QC:
– Added	the	new	imputed	data
– Added	chrX variants
– Added	VEP	missense	and	PTVs	with	MAF	>	1e-6
– Net:	3	million	more	variants

• 13.8	million	total

• Sample	QC:
– Relaxed	restriction	to	“white	British”	samples



• What	is	your	ethnic	group?
– White
– Mixed
– Asian	or	Asian	British
– Black	or	Black	British
– Chinese
– Other	ethnic	group
– Do	not	know
– Prefer	not	to	answer	

• What	is	your	ethnic	background?
– British
– Irish
– Any	other	white	background
– Prefer	not	to	answer

• Don’t	be	defined	as	a	PCA	outlier	
– Bayesian	outlier	detection	
algorithm	on	PCs	1&2,	3&4,	
and	5&6

How	“White	British”	is	defined



How	“White	British”	is	defined



Widening	out	definition	of	Europeans

• Get	mean	and	SD	of	top	6	PCs	among	the	
“white	British”

• Draw	ellipse	in	PCA	space	with	radius	of	
7	SDs	along	each	PC	axis
– Provides	good	predictive	accuracy	
for	self-reporting	“White”	vs.	other	
ethnicities

• Discard	any	self-reported	as	non-white

• Final	N	(after	QC):	361,194
– Previously	337,199	



Round	2:	GWAS	Changes

• Add	age,	age2,	sex*age,	and	sex*age2 as	covariates

• Increase	number	of	PC	covariates	from	10	to	20

• Compute	PCs	within	the	GWAS	sample	rather	than	using	the	
PCs	computed	by	UKB	on	the	full	sample

• In	addition	to	main	GWAS,	run	sex-specific	GWAS	[withou
sex	covariates



Let’s	go	to	the	code!

https://github.com/Nealelab/UK_Biobank_GWAS

We’ll start with the readme

https://github.com/Nealelab/UK_Biobank_GWAS


• Relatives	are	more	similar	
than	random	pairs

• Identical	twins	are	more	
similar	than	fraternal	twins

Francis	Galton
Twin	and	family	studies

Average estimate of  heritability 49%
69% of  twin studies support a purely additive genetic model
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Despite a century of research on complex traits in humans, the 
relative importance and specific nature of the influences of 
genes and environment on human traits remain controversial. 
We report a meta-analysis of twin correlations and reported 
variance components for 17,804 traits from 2,748 publications 
including 14,558,903  partly dependent twin pairs, virtually 
all published twin studies of complex traits. Estimates of 
heritability cluster strongly within functional domains, 
and across all traits the reported heritability is 49%. For a 
majority (69%) of traits, the observed twin correlations are 
consistent with a simple and parsimonious model where twin 
resemblance is solely due to additive genetic variation. The 
data are inconsistent with substantial influences from shared 
environment or non-additive genetic variation. This study 
provides the most comprehensive analysis of the causes of 
individual differences in human traits thus far and will guide 
future gene-mapping efforts. All the results can be visualized 
using the MaTCH webtool.

Specifically, the partitioning of observed variability into underlying 
genetic and environmental sources and the relative importance of 
additive and non-additive genetic variation are continually debated1–5.  
Recent results from large-scale genome-wide association studies 
(GWAS) show that many genetic variants contribute to the variation 
in complex traits and that effect sizes are typically small6,7. However, 
the sum of the variance explained by the detected variants is much 
smaller than the reported heritability of the trait4,6–10. This ‘missing 
heritability’ has led some investigators to conclude that non-additive 
variation must be important4,11. Although the presence of gene-gene 
interaction has been demonstrated empirically5,12–17, little is known 
about its relative contribution to observed variation18.

In this study, our aim is twofold. First, we analyze empirical esti-
mates of the relative contributions of genes and environment for  
virtually all human traits investigated in the past 50 years. Second, we 
assess empirical evidence for the presence and relative importance of 
non-additive genetic influences on all human traits studied. We rely  
on classical twin studies, as the twin design has been used widely 
to disentangle the relative contributions of genes and environment, 
across a variety of human traits. The classical twin design is based 
on contrasting the trait resemblance of monozygotic and dizygotic 
twin pairs. Monozygotic twins are genetically identical, and dizygotic 
twins are genetically full siblings. We show that, for a majority of traits 
(69%), the observed statistics are consistent with a simple and parsi-
monious model where the observed variation is solely due to additive 
genetic variation. The data are inconsistent with a substantial influence 
from shared environment or non-additive genetic variation. We also 
show that estimates of heritability cluster strongly within functional 
domains, and across all traits the reported heritability is 49%. Our 
results are based on a meta-analysis of twin correlations and reported 
variance components for 17,804 traits from 2,748 publications includ-
ing 14,558,903 partly dependent twin pairs, virtually all twin studies of 
complex traits published between 1958 and 2012. This study provides 
the most comprehensive analysis of the causes of individual differences 
in human traits thus far and will guide future gene-mapping efforts. All 
results can be visualized with the accompanying MaTCH webtool.

RESULTS
The distribution of studied traits is nonrandom
We systematically retrieved published classical twin studies in which 
observed variation in human traits was partitioned into genetic and 
environmental influences. For each study, we collected reported 

Meta-analysis of the heritability of human traits based on 
fifty years of twin studies
Tinca J C Polderman1,10, Beben Benyamin2,10, Christiaan A de Leeuw1,3, Patrick F Sullivan4–6,  
Arjen van Bochoven7, Peter M Visscher2,8,11 & Danielle Posthuma1,9,11

1Department of Complex Trait Genetics, VU University, Center for Neurogenomics 
and Cognitive Research, Amsterdam, the Netherlands. 2Queensland Brain 
Institute, University of Queensland, Brisbane, Queensland, Australia. 3Institute 
for Computing and Information Sciences, Radboud University Nijmegen, 
Nijmegen, the Netherlands. 4Center for Psychiatric Genomics, Department 
of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 
5Department of Psychiatry, University of North Carolina, Chapel Hill, North 
Carolina, USA. 6Department of Medical Epidemiology and Biostatistics, 
Karolinska Institutet, Stockholm, Sweden. 7Faculty of Sciences, VU University, 
Amsterdam, the Netherlands. 8University of Queensland Diamantina Institute, 
Translational Research Institute, Brisbane, Queensland, Australia. 9Department 
of Clinical Genetics, VU University Medical Center, Neuroscience Campus 
Amsterdam, Amsterdam, the Netherlands. 10These authors contributed equally 
to this work. 11These authors jointly supervised this work. Correspondence should 
be addressed to D.P. (d.posthuma@vu.nl).

Received 13 February; accepted 1 April; published online 18 May 2015; 
doi:10.1038/ng.3285

Insight into the nature of observed variation in human traits is impor-
tant in medicine, psychology, social sciences and evolutionary biology.  
It has gained new relevance with both the ability to map genes for 
human traits and the availability of large, collaborative data sets to do 
so on an extensive and comprehensive scale. Individual differences in 
human traits have been studied for more than a century, yet the causes 
of variation in human traits remain uncertain and controversial.  



• Use	estimated	genetic	
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LD	Score	regression

Brendan	Bulik-Sullivan Alkes PricePo-Ru Loh Mark	DalyHilary	Finucane

With	thanks



How	does	LD	shape	association?



How	does	LD	shape	association?

LD	blocks

Lonely	SNPs	[no	LD]



How	does	LD	shape	association?

LD	blocks
Lonely	SNPs	[no	LD]

* Causal	variants

*
Association

All	markers	correlated	with	a	causal	variant	show	association



How	does	LD	shape	association?

LD	blocks
Lonely	SNPs	[no	LD]

* Causal	variants

*
Association

Lonely	SNPs	only	show	association	if	they	are	causal



What	happens	under	polygenicity?

LD	blocks
Lonely	SNPs	[no	LD]

* Causal	variants

Assuming	a	uniform	prior,	we	see	SNPs	with	more	LD	friends	
showing	more	association

The	more	you	tag,	the	more	likely	you	are	to	tag	a	causal	variant



Simulated	polygenic	architecture
Lambda	=	1.30	LD	score	intercept	=	1.02
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What	happens	under	stratification?

LD	blocks
Lonely	SNPs	[no	LD]

* Causal	variants

Under	pure	drift	we	expect	LD	to	have	no	relationship	to	
differences	in	allele	frequencies	between	populations



UK	controls	versus	Sweden	controls
Lambda	=	1.30	LD	score	intercept	=	1.32
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Lambda	=	1.48
Intercept	=	1.06
Slope	p-value	<	10-300

Overwhelming	majority	of	
inflation	is	consistent	with	
polygenic	architecture

PGC	Schizophrenia
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LD	Score	regression	

β

Draw polygenic effects from 
N (0, n/m2), var = 

What is the E[χ2] for variant j?

where N=sample size, M=# of SNPs, a=inflation due to confounding, 
h2g is heritability (total obs.) and lj is the LD Score

Bulik-Sullivan et al. Nature Genetics 2015
Yang et al. EJHG 2011

-0.2 -0.1 0.0 0.1 0.2

! !!! = 1+ !" + !ℎ!
!!
! !! 

!!! = !!"!
!!!

 

New estimator of heritability 



9,928	GWAS	later… let’s	talk	h2
using	LD	score	regression

! !!! = 1+ !" + !ℎ!
!!
! !! 

Estimating heritability from GWAS summary statistics



How	do	round	2	ldsc results	compare?

• Intercept less significant 
• h2 more significant with stable estimates

Intercept -log10(p) of old 

In
te

rc
ep

t -
lo

g 1
0(

p)
 o

f n
ew

h2 -log10(p) of old 

h2
-lo

g 1
0(

p)
 o

f n
ew

Raymond Walters



Let’s	look	at	heritability

Lymphocyte count
Reticulocyte count
Reticulocyte %
High light scatter reticulocyte %

Reticulocyte count

Raymond Walters



What	about	sex-specific	effects?

• Sex-specific	GWAS	allow	us	to	scan	for:
– Differences	in	female	vs.	male	h2

• E.g.	could	indicate	differences	in	variance	of	environmental	
effects,	measurement	differences

– female	vs.	male	rg <	1
• E.g.	relative	effects	of	different	SNPs	differ	by	sex

• Can	also	test	for	SNP-level	differences
– Slower	and	labor	intensive,	so	h2,	rg can	help	prioritize

• To	start:	look	at	448	phenotypes	with	Neff	>	10000	in	both	sexes									
and	z-score	of	h2	>	4	is	at	least	1	sex

Raymond Walters



Strong	h2 observed	in	both	sexes

• >70%	of	traits	at	least	
nominally	heritable	in	
each	sex
– P	<	.05

• Mean	h2 ~	.09

• Consistent	with	joint	
analysis	of	both	sexes



Is	h2 equal	across	sexes?

h2 strongly	correlated	across	sex

description Fem. h2 Male h2 P diff

Average weekly beer plus cider intake 0.0416 0.1152 3.11E-10

Diastolic blood pressure, automated 0.1799 0.1160 1.13E-06

Systolic blood pressure, automated 0.1768 0.1208 1.03E-05

Number of operations, self-reported 0.0845 0.0491 2.53E-05

Duration of vigorous activity 0.0037 0.0555 3.91E-05

~10%	of	traits	have	nominally	
different	h2	between	sexes



Female	(1)	vs	male	(0)	GWAS

h2 (ldsc) = 0.012 (0.002)

Michel Nivard Mattijs van der Zee



Differential	ascertainment	bias



Male/Female	genetic	correlation

• Next	step	is	to	look	at	genetic	correlation	between	female	
and	male	results	for	each	trait
– Again	using	LD	score	regression

• Focus	on	448	traits	with	significant	h2 in	at	least	one	sex
– After	Bonferroni	correction	for	865	traits

Raymond Walters



Genetic	correlation	estimate	between	
females	and	males

Female:Male Genetic Correlation

C
ou

nt
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30

40
50

Cereal type: Bran cerealDisease of urinary systemHernia



Phenotypes	with	male/female	rg
significantly	<	1	(p	<	1e-5)



Genetic Correlation
Method in:



Potential	sources	of	genetic	correlation

Trait 1 Trait 2Trait 2

Trait 1 exerts causal effect on Trait 2

Trait 1

Genetic
effects

Genetic
effects

Genetic effects influence 
Trait 1 and Trait 2



Slope	estimates	heritability

LD	Score	regression	
Genetic	correlation
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We	can	a	second	trait	and	
obtain	two	heritability	
estimates

LD	Score	regression	
Genetic	correlation
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Z*Z	=	χ2

So	we	can	estimate	genetic	
covariance	from	the	product	of	
the	Z-scores

LD	Score	regression	
Genetic	correlation
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Z*Z	=	χ2

So	we	can	estimate	genetic	
covariance	from	the	product	of	
the	Z-scores	for	the	two	traits
RG	=	0.5

LD	Score	regression	
Genetic	correlation
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Here	RG	=	0

This	approach	is	robust	to	
sample	overlap	as	all	variants	
are	equally	inflated

LD	Score	regression	
Genetic	correlation
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• Genetic	correlation	is	a	
widespread	phenomenon

Genetic	correlations
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Brainstorm	Project



Brainstorm	within	psychiatry



Brainstorm	within	neurology



Brainstorm	– across	neurology	and	
psychiatry



Brainstorm	– take	it	further?



Comprehensive evaluation of genetic 
correlation

https://ukbb-rg.hail.is/

Duncan Palmer

https://github.com/astheeggeggs/UKBB_ldsc_r2

https://ukbb-rg.hail.is/
https://github.com/astheeggeggs/UKBB_ldsc_r2

