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Pervasive (Statistical) Pleiotropy Necessitates

Methods for Analyzing Joint Genetic Architecture

Analysis of shared heritability in
common disorders of the brain

The Brainstorm Consortium*t
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Fig. 1. Genetic correlations across psychiatric phenotypes. The color of each box indicates the
magnitude of the correlation, and the size of the box indicates its significance (LDSC), with
significant correlations filling each square completely. Asterisks indicate genetic correlations that are

significantly different from zero after Bonferroni correction.
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Fig. 4. Genetic correlations across brain disorders and behavioral-cognitive phenotypes. The
color of each box indicates the magnitude of the correlation, and the size of the box indicates its
significance (LDSC), with significant correlations filling each square completely. Asterisks indicate
genetic correlations that are significantly different from zero after Bonferroni correction.
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We have a genetic “Atlas.” Now what?

Genetic correlations as data to be modeled, not simply results by themselves

 What data-generating process gave rise to the correlations?
* Are some more plausible than others?

e Can a high dimensional matrix of genetic correlations among phenotypes be closely
approximated with low dimensional representation?
Incorporate joint genetic architecture into multivariate GWAS
e Discovery on latent factors, or residuals of phenotypes after controlling for other
phenotypes
Derive novel phenotypes for use in polygenic score analyses

e Polygenic Scores for internalizing psychopathology (e.g. depression, anxiety,
neuroticism)

e Polygenic scores for anxiety unique of depression



Genomic Structural Equation Modeling

https://www.biorxiv.org/content/early/2018/04/21/305029

* Flexible method for modeling the joint genetic architecture of many
traits

* Only requires conventional GWAS summary statistics
 Accommodates varying and unknown amounts of sample overlap

e Can incorporate models of joint genetic architecture into GWAS
e to aid in multivariate discovery
e to create polygenic scores for derived phenotypes

e Can be used to formalize Mendelian randomization across large
constellations of SNPs and phenotypes

* Free, open source, self-contained R package


https://www.biorxiv.org/content/early/2018/04/21/305029

A Primer: How does SEM
mOdE' covariances?

Structural Equation Modeling = structured covariance modeling



Imagine we knew the generating causal
Orocess

1 <{ X .40 < qi@}) .84

y=.40x+u, x~(0,1) , u,~(0,.84)



Imagine we knew the generating causal
Orocess
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Imagine we knew the generating causal

OIFOCESS
1 <{ « 40
y=.40x+u,

z=.60y+u,
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cov(x,y,z)

pop

Implied covariance matrix
in the population

1.00
40 |1.00
24 | .60 |1.00




In practice, we only observe the sample data,
and we propose a model

observed covariance matrix covariance matrix

in a sample in population
94 1.00
33 | 1.02 ~ 40 | 1.00
27 | .62 |1.02 24 | .60 | 1.00




For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data

COV(X'y'Z)sampIe -

6 unique elements in the covariance matrix being modeled

5 free model parameters
1 df

.94
33 [1.02
27 | .62 |1.02




For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data
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The model that we fit may include some
variables for which we do not observe data

0?; (= 1 for scaling)

Ve =MNF+u,

F ~ (0/ c)-ZF) ’ uyk ~ (O) c)-Zuk)

F is unobserved.
Parameters are estimated from,
and fit is evaluated relative to,

the sample covariance matrix for y;-y,.

Y1 Yo Y3 Ya Ys




The model that we fit may include some
variables for which we do not observe data

2
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Genomic SEM uses these principles to fit structural equation
models to genetic covariance matrices derived from GWAS
summary statistics using 2 Stage Estimation

e Stage 1: Estimate Genetic Covariance Matrix and associated matrix of
standard errors and their codependencies

 We use LD Score Regression, but any method for estimating this matrix (e.g.
GREML) and its sampling distribution can be used

e Stage 2: Fit a Structural Equation Model to the Matrices from Stage 1



Fitting Structural Equation Models to
GWAS-Derived Genetic Covariance
Matrices

R package: GenomicSEM

install .packages(''devtools")
library(devtools)

install _github(*'MichelNivard/GenomicSEM™)
Library(GenomicSEM)



Start with GWAS Summary Statistics for the
Phenotypes of Interest

* No need for raw data

* No need to conduct a primary GWAS yourself: Download them
online!
e sumstats for over 3700 phenotypes have been helpfully indexed at
http://atlas.ctglab.nl/

e sumstats for over 4000 UK Biobank phenotypes are downloadable at
http://www.nealelab.is/uk-biobank

CHR SNP BP A1 A2 1INFO OR SE P Nca Nco MAF
8 1rs62513865 101592213 T C 0.957 1.014601 ©.9153 @.3438 59851 113154 0.07330
8 rs79043588 106973048 G 0.999 1.02122 9.9136 @.1231 59851 113154 ©.09200
8 rsl173960518 108690829 G 0.980 1.00331 ©.0080 @.6821 59851 113154 ©.43500
8 rso6994300 102569817 G 0.466 0.88120 ©.4243 @.7658 16823 25632 0.00556
8 rs138449472 108580746 G 0.734 0.97181 ©.0598 @.6320 41253 797560 0.00852
8 rs983166 108681675 C 0.991 0.99144 0.0080 @.2784 59851 113154 ©.43200

> > > - >


http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank

Prepare the data for LDSC: Munge

Aligns allele sign across sumstats for all traits

Computes z-statistics needed for LDSC

Restricts to common SNPs (MAF>.01) on reference panel
Function requires:

1. names of the summary statistics files
2. name of the reference file. Hapmap 3 SNPs (downloadable on our wiki) with the MHC region removed is

standard
(well-imputed and well-known LD structure)

3. trait names that will be used to name the saved files

munge(c(''scz.txt", "bip.txt", “mdd.txt",
"ptsd.txt',"anx.txt""),
"w_hm3.noMHC.snplist",trait.names=c(''scz",
"bip","mdd","ptsd", "anx'"))



Stage 1 Estimation: Multivariable LDSC

Create a genetic covariance matrix, S: an “atlas of genetic correlations”

sumstats <- c(''scz.sumstats.gz',
"bip.sumstats.gz",“EA_sumstats.gz'’)

Diagonal elements are

(heritabilities) #for case control phenotypes
- ) - sample.prev <- c¢(-39,.45,NA)
h] population.prev <- c(.01,.01,NA)
2
CTngz hz Id <- "eur_w _Id chr/"
trait.names<-c("'SCZ","BIP",“EA')
2
| Ogtgk g2 h}_ LDSCoutput <- ldsc(sumstats, sample.prev,
Off-diagonal elements are population.prev, Id, Id, trairt.names)

coheritabilities



Stage 1 Estimation: Multivariable LDSC

Also produced is a second matrix, V, of squared standard errors and the
dependencies between estimation errors

- SE(h?Y: Diagonal elements are .
squared standard errors of

2 2
cov(h ,o SE(o ) . :
(B30 42) (Gg142) genetic variances and covariances

SE(O-gl,gk )2
SE(h?)’

SE(0,; )
SE(h})*

Off-diagonal elements are dependencies between estimation
errors used to directly model dependencies that occur due to
sample overlap from contributing GWASs



Stage 2 Estimation: Specify the SEM

Example: Genetic multiple regression

EA, = b, x SCZ, + b, x BIP, + u

SCZ
S = 57 | BIP
O
15 | .27 | EA ?
m
Q

(df = 0, model parameters are a simply a transformation of the matrix)



Stage 2 Estimation: Specify the SEM

REGmodel <- "EA ~ SCZ + BIP
SCZ~~BIP*

#run the model using the user defined function
REGoutput<-usermodel (LDSCoutput, model = REGmodel)

#print the output
REGoutput



RESULTS

$results

lhs op rhs Unstandardized Estimate Unstandardized SE Standardized Est Standardized SE
1 EA ~ SCZ -0.0930e5117 ©.077550529 -0.1603337 ©.13362500
2 EA ~ BIP ©.319602692 ©.119496510 ©.4013460 ©.15033041
3 SCZ ~~ BIP ©0.12289914 0.011845099 ©.67277860 ©.06484279
10 SCZ ~~ SCZ ©.25020062 ©.017482875 1.0000000 ©.06987543
11 BIP ~~ BIP ©.13337232 ©.013696265 1.0000000 ©.10269196
12 EA ~~ EA ©.07582781 0.007838676 ©.8998001 ©.09301655

EA, =-.016 x SCZ, +.283 x BIP, + u

.899 (.093)

673 (.065)




Example 2:
Traits

Genetic Factor Analysis of Anthropometric

TwoFactor <- "F1 =~ NA*BMI + WHR + CO + Waist + Hip
F2 =~ NA*Hip + Height + IHC + BL + BW
F1~~1*F1
F2~~1*F2
F1~~F2*"

#run the model
Anthro<-usermodel (anthro, model = TwoFactor)

#print the results
Anthro

1, e

Early
life,

—




Example 2: Genetic Factor Analysis of Anthropometric
Traits

Genetic Correlation Matrix

11 (.03)

BMI

ehQ

79 (.03)

WHR

VE]
_%(.02/

56.(.03) 1 nn{ 03)

co

".ruoen

Waist

Hip

Height
IHC 07 (.02) 69 (.06) SO =.01.01) 16 (.03) 61 (.06) T0(19) A20.13) A0 (T

BL

BW

| df = 25, CFl = .951, SRMR = .089

-0.10.010.120.230.340.450.560.670.780.89 1

BMI = body mass index; WHR = waist-hip ratio; CO =
childhood obesity; IHC = infant head circumference;
BL = birth length; BW = birth weight.

sumstats from EGG and GIANT Consortia



Example 2: Genetic Factor Analysis of Anthropometric
Traits

Genetic Correlation Matrix Model-Implied Matrix

> 1 1
\ Pl 0.54 1
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BMI

Overw e:gha‘
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BMI = body mass index; WHR = waist-hip ratio; CO =
childhood obesity; IHC = infant head circumference;
BL = birth length; BW = birth weight.



Example 2: Genetic Factor Analysis of Anthropometric
Traits

Genetic Correlation Matrix Model-Implied Matrix
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Incorporating Genetic Covariance
Structure into Multivariate GWAS
Discovery



Example: Item level analysis of Neuroticism

e Univariate summary statistics for each of 12 individual items in UKB
downloaded from Neale lab website.

)
o)
(] sne =

OIOIOICICIORGRORICICY
oo@ooo @ &



Prepare Summary Statistics:

e Aligns allele sign across sumstats for all traits
e Converts odds ratios and “linear probability model” coefficients into logistic
regression coefficients
e Converts corresponding standard errors
e Standardizes effect sizes to phenotypic variance =1

ss=c("r1teml.txt","1tem2._.txt","1tem3.txt", "item4d.txt", "rtemb5.txt', "item6.txt",
"Ttem7.txt", "item8.txt', "item9.txt", "i1temlO.txt', "irtemll.txt'", "irteml2.txt")
refpan=""reference.1000G.maf.0.005.txt"
items=c("'N1",""N2"",""N3"","*"N4"" ,*'N5"","*"N6"", "'N7"*, "'N8"", "*"N9** ,N10"", "*N11"","'"N12"")
se.l=c(F,F,F,F,F,F,F,F,F,F,F,F)

lp=c(T,T,T,T,T,T,T,T,T,T,T,T)

propor<-c(.451, .427,.280, .556, .406, .237,.568,.171,.478,.213,.177, .283)

processed sumstats <-
sumstats(files=ss,ref=refpan, trait.names=1tems,se.logit=se.l, linprob=Ip,prop=propor)



Add SNP Effects to the “Atlas”

Expand S to include SNP Effects

B 2

O snp
O snp g1
g Osnpg2  Ogig2

Osnpg3  Oglg3

| Osvegk O g1 gk

Betas from
GWAS sumstats
scaled to covariances
using MAFs

Genetic Covariances

From LDSC

hy

SNPcov<-
addSNPs(LDSCoutput,processed sumstats)



Run the model
NeurMode l<-commonfactorGWAS(SNPcov)

22(01) 20(01)

28 (.01) 24(01) 24 (.01)
] } ol
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Genomic SEM is a broad framework
not just one model

 Genomic SEM is a statistical framework (and freely available
standalone software package) for estimating a nearly limitless
number of user specified models to multivariate GWAS summary
statistics

 Lots of other possibilities, e.g.:
e Deriving Polygenic Scores for “Residual” Phenotypes
 Mendelian-Randomization within Multivariate Networks



Empirical example

e Are the socioeconomic sequelae of ADHD mediated by educational
attainment?

* Relevant because if true, staying in school may become a treatment
goal for ADHD.



Creating sumstats (and computing polygenic
scores) for a derived phenotype, e.g. a residual

Modell <- "EA ~ SNP
Income ~ EA SNP*®

#run the model
EA Inc<-userGWAS(SNPcov, model = Modell)




Genetic Mediation in Latent Genetic Space

Model2 <- "EA ~ ADHD
Income ~ EA ADHD*®

#run the model
ADHD _EA Inc<-usermodel (LDSCoutput, model =

Model2)

Summary Statistics:

e ADHD (Demontis et al., 2017)

e Educational Attainment (Okbay et al. 2016)
e |ncome (Hill et al., 2016)



But... not distinguishable from other models
£

Model3 <- "EA ~ ADHD
Income ~ ADHD
EA ~~ Income-®

#run the model
ADHD EA Inc<-usermodel (LDSCoutput, model =
Model2)

Summary Statistics:

e ADHD (Demontis et al., 2017)

e Educational Attainment (Okbay et al. 2016)
e |ncome (Hill et al., 2016)



|dentifying Plausible Causal Pathways:
Mendelian Randomization in Multivariate Networks

* Genomic SEM models genetic covariance structure
e Genomic SEM allows for SNPs in the model
* These can be combined to perform Mendelian Randomization (MR)



MR in Genomic SEM

 Mendelian randomization using GWAS summary data

Instrumental Variable Heritable Phenotypes
(e.g. SNP)

-



MR in Genomic SEM

 Mendelian randomization using GWAS summary data

.

=0

the “Exclusion Restriction”



MR in Genomic SEM

 Mendelian randomization using GWAS summary data

residual genetic confounding
(e.g. pleiotropy from other variants)

() ()
Causal Pathway
m () ()




MR in Genomic SEM Networks
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* Income (Hill et al., 2016)
See also: Burgess & Thompson (2015) e Used as outcome in this example



MR in Genomic SEM Networks
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e 11 hits, 4 present in al

* Income (Hill et al., 2016)
e Used as outcome in this example



MR in Genomic SEM Networks
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MR in Genomic SEM Networks
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Overview

e Genomic SEM is ready for use today!

e Work through examples and tutorials on our wiki
(https://github.com/MichelNivard/GenomicSEM/wiki)

e Ask questions on our google forum
e Lots can be done using existing, openly available GWAS summary statistics

 Models are flexible and up to the user

 Modeling language is very straightforward
* Regression:y ™~ x
e Covariance: x1 ~ x2

e Use Genomic SEM to derive sumstats for novel phenotypes for use in PGS
analyses



https://github.com/MichelNivard/GenomicSEM/wiki
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extras



Stage 2 Estimation

We specify a Structural Equation Model that implies a genetic
covariance matrix Z(0) as a function of a set of model parameters 0.

Parameters are estimated such that they minimize the discrepancy
between the model implied genetic covariance matrix 2(0) and the S
genetic covariance matrix estimated in Stage 1, weighted by the inverse
of diagonal elements of the V matrix.

Fs (0)=(S~2(0)) diag (1) (S -2(0))

“Asymptotic Distribution Free” (Brown, 1984; Muthen, 1993)



Stage 2 Estimation

Standard errors are obtained with a sandwich correction using the full V,
matrix

v,=(AT"A) AT VI 'A(ATA)

where A is the matrix of model derivatives evaluated at the parameter
estimates, I is the naive weight matrix, diag(V,), used in paramemeter
estimation, and V. is the full sampling covariance matrix of the genetic
variances and covariances.

Model Fit Statistics (model x?, AIC, CFl) are derived using S and V matrices,
rather than the usual formulas that only apply to raw data-based estimates
of covariance matrices



MTAG builds off the LDSC framework

o= X Pyt €

¢, 1S an Nx1 vector of scores on phenotype k
X is an NxM matrix of standardized genotypes

P 1s an Mx1 vector of genotype effect sizes for
phenotype k

¢, 1s an Nx1 vector of residuals for phenotype k

B, are random effects

* E(f,)= 0 and cov(s,)= Q

* X Is the sampling covariance
matrix of GWAS estimates of S,

e In other words:
1

Qutac = 77 Sesem aNd X yrag = Vsnp asem



How Does Genomic SEM Relate
to Other Multivariate Methods
for GWAS Discovery?

e.g. MTAG (Turley et al., 2018)



MTAG is a Specific Model in Genomic SEM

MTAG Moment Condition

=0

o B m;
h[ﬁs__ﬁ:r

;B = cov (t’S)LDSCIB ]
GWAS j,s Va[(t)LDSC MTAG j,t

] _ ﬁGWAS-
1.e., Pumtacjt = m
and

Purac it = Powasiit

1
( Qutac = = Sesem and Z yirac = Ve esem)
M

MTAG as a Genomic SEM

Xl SNPj

2
O%snpj

OGWAS is —
—2_1“0 _S =p “MTAG”j t IBLDSC ts
SNPj
ie IB _ ﬂGWAS |.S
o “MTAG”J’t:,BLDSCts

and
— 2
Ocwasjt = O°snpj X P “MTAG )t

1.6, B «mmacrit = Bowas it



Classic MTAG vs. Genomic SEM “MTAG”

(Simulation Data: 2 phenotypes, 40% sample overlap)

SNP Effect Size Estimates Z Statistics
Ju
S < _| R>99% . © ] RT>99%
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Fig. S1. Genomic SEM simulation results. Results from 100 runs of Genomic SEM using data
simulated at the level of the SNPs. Results are presented for unstandardized (panel a) and standardized
(panel b) estimates. Parameters outside of the parentheses indicate those provided in the generating
population. In parentheses, we provide for WLS (in italics) and ML (in bold) estimation the average
point estimate and the ratio of the mean SE estimate across the 100 runs over the empirical SE (calculated
as the standard deviation of the parameter estimates across the 100 runs). The ratio of mean and empirical
SEs was close to 1 in all cases, although slightly above 1 (i.e., conservative) for standardized estimates of
residual variance. These SE estimates are expected to be upwardly biased in the standardized case due to
heritability estimates being fixed to 100%.
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Fig. S25. Distributions of calculated and theoretical y” statistics. Comparison between distribution of

¥ values for model estimated from S and V matrices using WLS (left column) and ML (middle column)
against a theoretical ¥’ distribution. The right column compares the distributions of WLS (blue bars) and using lavaan. Summary data-based estimates of model % were computed using the S and ¥ matrices with

ML (green bars). WLS (left) and ML (right) estimation. The red line in the middle and left panel reflects the regression line
for the raw data-based model % predicting itself. The blue line in the right panel reflects the regression

computed from raw data. Raw data-based estimates of model %* were computed directly from the data

line for the WLS y* predicting itself.
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Fig. S15. Qsxe—log10 p-values for common-factor and indicator-specific hits. Results are depicted for
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WLS estimation of the p-factor (panel a) and neuroticism (panel b). There were 684 non-independent
SNPs identified as genome-wide significant for p-factor, but not the univariate GWAS, and 1,022

indicator-specific SNPs. For neuroticism, there were 2,540 non-independent hits specific to the common
factor and 6,523 hits specific to the indicators. The average —log10 Qsne p-value was 0.61 for hits only on

the p-factor and 1.81 for hits specific to the univariate indicators. For neuroticism, the average —log10
Qsne p-value was 0.95 for hits unique to the common factor and 5.95 for hits unique to the indicators.
Thus, Qsne values were generally more significant for those SNPs not identified as significant for the

common factor.



WLS 2 df ML 2 df Comparison 2 df

i f $
: ? :
Chi-square computed using WLS with Raw Data Chi-square computad using ML with Raw Data WLS chi-square
WLS 5 df ML 5 df Comparison 5 df
& f ]
I % e £ =
E 2 z
Py o
Chi-square compuled using WLS with Raw Data Chi~sguare computed using ML with Raw Data WLS  chi-square
WLS 9 df ML 9 df Comparison 9 df
0 4 o
" & "8
i
fe i §
2 2
g = =

Chi-square computed using WLS: wah Raw Dt Chi-square computed using ML with Raw Daia WLS chi-square

Fig. S24. Associations between model %’ values computed from summary data and model x* values
computed from raw data. Raw data-based estimates of model x* were computed directly from the data
using lavaan. Summary data-based estimates of model y* were computed using the S and ¥ matrices with
WLS (left) and ML (right) estimation. The red line in the middle and left panel reflects the regression line
for the raw data-based model y” predicting itself. The blue line in the right panel reflects the regression
line for the WLS 7’ predicting itself.
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Fig. S28. Null distributions of Qsnp for 1,000 simulations per model. Red lines for all panels depict the
chi-square distribution with the relevant df. The top, middle, and bottom panels depict the sampling
distributions for 3, 4, and 5 df, respectively. The left-most column shows estimates for WLS, the middle
column estimates for ML and the right-most column overlays the WLS (depicted in light blue) and ML
(light green) Qsnp estimates.
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