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Pervasive (Statistical) Pleiotropy Necessitates 
Methods for Analyzing Joint Genetic Architecture



We have a genetic “Atlas.” Now what?

Genetic correlations as data to be modeled, not simply results by themselves
• What data-generating process gave rise to the correlations?

• Are some more plausible than others?
• Can a high dimensional matrix of genetic correlations among phenotypes be closely 

approximated with low dimensional representation?

Incorporate joint genetic architecture into multivariate GWAS
• Discovery on latent factors, or residuals of phenotypes after controlling for other 

phenotypes

Derive novel phenotypes for use in polygenic score analyses
• Polygenic Scores for internalizing psychopathology (e.g. depression, anxiety, 

neuroticism)
• Polygenic scores for anxiety unique of depression



Genomic Structural Equation Modeling
https://www.biorxiv.org/content/early/2018/04/21/305029

• Flexible method for modeling the joint genetic architecture of many 
traits

• Only requires conventional GWAS summary statistics
• Accommodates varying and unknown amounts of sample overlap 
• Can incorporate models of joint genetic architecture into GWAS

• to aid in multivariate discovery 
• to create polygenic scores for derived phenotypes

• Can be used to formalize Mendelian randomization across large 
constellations of SNPs and phenotypes

• Free, open source, self-contained R package

https://www.biorxiv.org/content/early/2018/04/21/305029


A Primer: How does SEM 
model covariances?

Structural Equation Modeling = structured covariance modeling
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In practice, we only observe the sample data,
and we propose a model
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For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data
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6 unique elements in the covariance matrix being modeled
5 free model parameters
1 df



For the proposed model,
estimate parameters from the data,
and evaluate model fit to the data
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The model that we fit may include some 
variables for which we do not observe data
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The model that we fit may include some 
variables for which we do not observe data
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Genomic SEM uses these principles to fit structural equation 
models to genetic covariance matrices derived from GWAS 
summary statistics using 2 Stage Estimation

• Stage 1: Estimate Genetic Covariance Matrix and associated matrix of 
standard errors and their codependencies

• We use LD Score Regression, but any method for estimating this matrix (e.g. 
GREML) and its sampling distribution can be used 

• Stage 2: Fit a Structural Equation Model to the Matrices from Stage 1



Fitting Structural Equation Models to 
GWAS-Derived Genetic Covariance 
Matrices
R package: GenomicSEM

install.packages("devtools")

library(devtools)

install_github("MichelNivard/GenomicSEM")

library(GenomicSEM)



Start with GWAS Summary Statistics for the 
Phenotypes of Interest
• No need for raw data
• No need to conduct a primary GWAS yourself: Download them 

online!
• sumstats for over 3700 phenotypes have been helpfully indexed at 

http://atlas.ctglab.nl/
• sumstats for over 4000 UK Biobank phenotypes are downloadable at 

http://www.nealelab.is/uk-biobank

http://atlas.ctglab.nl/
http://www.nealelab.is/uk-biobank


Prepare the data for LDSC: Munge
• Aligns allele sign across sumstats for all traits
• Computes z-statistics needed for LDSC
• Restricts to common SNPs (MAF>.01) on reference panel
• Function requires:

1. names of the summary statistics files
2. name of the reference file. Hapmap 3 SNPs (downloadable on our wiki) with the MHC region removed is 

standard
(well-imputed and well-known LD structure)

3. trait names that will be used to name the saved files

munge(c("scz.txt", "bip.txt", “mdd.txt", 
"ptsd.txt","anx.txt"), 
"w_hm3.noMHC.snplist",trait.names=c("scz", 
"bip","mdd","ptsd","anx"))



Create a genetic covariance matrix, S: an “atlas of genetic correlations”

Diagonal elements are
(heritabilities)

Off-diagonal elements are
coheritabilities

Stage 1 Estimation: Multivariable LDSC

sumstats <- c("scz.sumstats.gz", 
"bip.sumstats.gz",“EA.sumstats.gz")

#for case control phenotypes
sample.prev <- c(.39,.45,NA)
population.prev <- c(.01,.01,NA)

ld <- "eur_w_ld_chr/"

trait.names<-c("SCZ","BIP",“EA")

LDSCoutput <- ldsc(sumstats, sample.prev, 
population.prev, ld, ld, trait.names)



Stage 1 Estimation: Multivariable LDSC
Also produced is a second matrix, V, of squared standard errors and the 
dependencies between estimation errors

Diagonal elements are
squared standard errors of
genetic variances and covariances

Off-diagonal elements are dependencies between estimation 
errors used to directly model dependencies that occur due to 
sample overlap from contributing GWASs



Example: Genetic multiple regression

EAg = b1 × SCZg + b2 × BIPg + u
SCZ

.57 BIP

.15 .27 EA

S =

(df = 0, model parameters are a simply a transformation of the matrix)

Stage 2 Estimation: Specify the SEM

uEA
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REGmodel <- 'EA ~ SCZ + BIP

SCZ~~BIP'

#run the model using the user defined function

REGoutput<-usermodel(LDSCoutput, model = REGmodel)

#print the output

REGoutput

Stage 2 Estimation: Specify the SEM



EAg = -.016 × SCZg + .283 × BIPg + u

RESULTS



Example 2: Genetic Factor Analysis of Anthropometric 
Traits TwoFactor <- 'F1 =~ NA*BMI + WHR + CO + Waist + Hip

F2 =~ NA*Hip + Height + IHC + BL + BW
F1~~1*F1
F2~~1*F2
F1~~F2'

#run the model
Anthro<-usermodel(anthro, model = TwoFactor)

#print the results
Anthro



Example 2: Genetic Factor Analysis of Anthropometric 
Traits

BMI = body mass index; WHR = waist-hip ratio; CO = 
childhood obesity; IHC = infant head circumference; 
BL = birth length; BW = birth weight. 

df = 25,  CFI = .951, SRMR = .089

sumstats from EGG and GIANT Consortia
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Example 2: Genetic Factor Analysis of Anthropometric 
Traits
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Incorporating Genetic Covariance 
Structure into Multivariate GWAS 
Discovery
Andrew



Example: Item level analysis of Neuroticism
• Univariate summary statistics for each of 12 individual items in UKB 

downloaded from Neale lab website.



Prepare Summary Statistics:

ss=c("item1.txt","item2.txt","item3.txt", "item4.txt", "item5.txt", "item6.txt",

"item7.txt", "item8.txt", "item9.txt", "item10.txt", "item11.txt", "item12.txt")

refpan="reference.1000G.maf.0.005.txt"

items=c("N1","N2","N3","N4","N5","N6","N7","N8","N9",N10","N11","N12")

se.l=c(F,F,F,F,F,F,F,F,F,F,F,F)

lp=c(T,T,T,T,T,T,T,T,T,T,T,T)

propor<-c(.451,.427,.280,.556,.406,.237,.568,.171,.478,.213,.177,.283)

processed_sumstats <-

sumstats(files=ss,ref=refpan,trait.names=items,se.logit=se.l,linprob=lp,prop=propor)

• Aligns allele sign across sumstats for all traits
• Converts odds ratios and “linear probability model” coefficients into logistic 

regression coefficients
• Converts corresponding standard errors 

• Standardizes effect sizes to phenotypic variance = 1



Add SNP Effects to the “Atlas”
Expand S to include SNP Effects 

Genetic Covariances
From LDSC

Betas from
GWAS sumstats

scaled to covariances
using MAFs

SNPcov<-

addSNPs(LDSCoutput,processed_sumstats)



Run the model
NeurModel<-commonfactorGWAS(SNPcov)



• 118 lead SNPs
• 38 unique loci not previously identified in 

any of the 12 univariate sum stats  (   )
• 60 previously significant in univariate sum 

stats, but not for neuroticism (      )

• 69 significant QSNP estimates (*)





Relative Power



Genomic SEM is a broad framework
not just one model

• Genomic SEM is a statistical framework (and freely available 
standalone software package) for estimating a nearly limitless 
number of user specified models to multivariate GWAS summary 
statistics

• Lots of other possibilities, e.g.:
• Deriving Polygenic Scores for “Residual” Phenotypes
• Mendelian-Randomization within Multivariate Networks



Empirical example

• Are the socioeconomic sequelae of ADHD mediated by educational 
attainment?

• Relevant because if true, staying in school may become a treatment 
goal for ADHD.



Creating sumstats (and computing polygenic 
scores) for a derived phenotype, e.g. a residual

SNP

Incomeg ui1EAg

b*

uEA

a

1

c

Model1 <- 'EA ~ SNP 
Income ~ EA SNP'

#run the model
EA_Inc<-userGWAS(SNPcov, model = Model1)



Genetic Mediation in Latent Genetic Space

Summary Statistics:
• ADHD (Demontis et al., 2017)
• Educational Attainment (Okbay et al. 2016)
• Income (Hill et al., 2016)

Model2 <- 'EA ~ ADHD 
Income ~ EA ADHD'

#run the model
ADHD_EA_Inc<-usermodel(LDSCoutput, model = 
Model2)

Incomeg ui1EAg

uEA

1

ADHDg

1

-.16
-.53

.72
.33

.72



But… not distinguishable from other models
Model3 <- 'EA ~ ADHD 

Income ~ ADHD
EA ~~ Income'

#run the model
ADHD_EA_Inc<-usermodel(LDSCoutput, model = 
Model2)

Incomeg

ui

1EAg

uEA

1

ADHDg

1

-.54
-.53

.72 .71
.52

Summary Statistics:
• ADHD (Demontis et al., 2017)
• Educational Attainment (Okbay et al. 2016)
• Income (Hill et al., 2016)



Identifying Plausible Causal Pathways:
Mendelian Randomization in Multivariate Networks

• Genomic SEM models genetic covariance structure
• Genomic SEM allows for SNPs in the model
• These can be combined to perform Mendelian Randomization (MR)



MR in Genomic SEM

• Mendelian randomization using GWAS summary data

y1g y2g

Instrumental Variable
(e.g. SNP)

Heritable Phenotypes



MR in Genomic SEM

• Mendelian randomization using GWAS summary data

y1g y2g

= 0

the “Exclusion Restriction”



MR in Genomic SEM

• Mendelian randomization using GWAS summary data

y1g y2g

= 0

u1 u1

residual genetic confounding
(e.g. pleiotropy from other variants)

Causal Pathway



ADHD

EA

Income

r

r

r

See also: Burgess & Thompson (2015)

MR in Genomic SEM Networks

Summary Statistics:
• Educational Attainment (Okbay et al. 2016)

• 160 hits (Sample 8 hits for this example)
• ADHD (Demontis et al., 2017)

• 11 hits, 4 present in al
• Income (Hill et al., 2016)

• Used as outcome in this example



MR in Genomic SEM Networks
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Summary Statistics:
• Educational Attainment (Okbay et al. 2016)

• 160 hits (Sample 8 hits for this example)
• ADHD (Demontis et al., 2017)

• 11 hits, 4 present in al
• Income (Hill et al., 2016)

• Used as outcome in this example



MR in Genomic SEM Networks
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Summary Statistics:
• Educational Attainment (Okbay et al. 2016)

• 160 hits (Sample 8 hits for this example)
• ADHD (Demontis et al., 2017)

• 11 hits, 4 present in al
• Income (Hill et al., 2016)

• Used as outcome in this example



Overview

• Genomic SEM is ready for use today!
• Work through examples and tutorials on our wiki 

(https://github.com/MichelNivard/GenomicSEM/wiki)
• Ask questions on our google forum

• Lots can be done using existing, openly available GWAS summary statistics
• Models are flexible and up to the user
• Modeling language is very straightforward

• Regression: y ~ x
• Covariance: x1 ~~ x2

• Use Genomic SEM to derive sumstats for novel phenotypes for use in PGS 
analyses

https://github.com/MichelNivard/GenomicSEM/wiki
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Stage 2 Estimation
We specify a Structural Equation Model that implies a genetic 
covariance matrix Σ(θ) as a function of a set of model parameters θ. 
Parameters are estimated such that they minimize the discrepancy 
between the model implied genetic covariance matrix Σ(θ) and the S 
genetic covariance matrix estimated in Stage 1, weighted by the inverse 
of diagonal elements of the V matrix.

“Asymptotic Distribution Free” (Brown, 1984; Muthen, 1993)



Stage 2 Estimation
Standard errors are obtained with a sandwich correction using the full Vsmatrix

where �Δ is the matrix of model derivatives evaluated at the parameter 
estimates, Γ is the naïve weight matrix, diag(Vs), used in paramemeter
estimation, and Vs is the full sampling covariance matrix of the genetic 
variances and covariances.

Model Fit Statistics (model χ2, AIC, CFI) are derived using S and V matrices, 
rather than the usual formulas that only apply to raw data-based estimates 
of covariance matrices



MTAG builds off the LDSC framework

φk = X βk + ϵk

• φk is an N×1 vector of scores on phenotype k

• X is an N×M matrix of standardized genotypes

• βk is an M×1 vector of genotype effect sizes for 
phenotype k

• ϵk is an N×1 vector of residuals for phenotype k

βk are random effects

• E(βk)= 0 and cov(βk)= Ω 
• Σ is the sampling covariance 

matrix of GWAS estimates of βk
• In other words:
ΩMTAG = 1

𝑀𝑀
SGSEM and  Σ MTAG ≈ VSNP GSEM 



How Does Genomic SEM Relate 
to Other Multivariate Methods 

for GWAS Discovery?

e.g. MTAG (Turley et al., 2018)



MTAG is a Specific Model in Genomic SEM
MTAG Moment Condition

βGWAS j,s = cov(t,s)LDSC
var(t)LDSC

βMTAG j,t

i.e., βMTAG j,t = βGWAS j,s
βLDSC t,s

and 

βMTAG j,t = βGWAS j,t

( ΩMTAG = 1
𝑀𝑀

SGSEM and  Σ MTAG ≈ VSNP GSEM )

MTAG as a Genomic SEM

σGWAS j,s
σ2

SNPj
= β “MTAG”j,t βLDSC t,s

i.e., β “MTAG”j,t = 
βGWAS j,s
βLDSC t,s

and 
σGWAS j,t = σ2

SNPj × β “MTAG”j,t

i.e, β “MTAG”j,t = βGWAS j,t

ut

s us
1 σ2

ustSNPj

σ2
ut

σ2
SNPj

β“MTAG”j,t βLDSC t,s

1



Classic MTAG vs. Genomic SEM “MTAG”
(Simulation Data: 2 phenotypes, 40% sample overlap)

R2 > 99%
Slope = .9979
Intercept = -.0001

R2 > 99%
Slope = .9996
Intercept = .0003





Chi Square Statistic Null Distribution Chi Square (SumStat) vs. Chi Square 
(Raw)
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