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Motivating guestion:
What Is the genetic architecture
of complex human traits?




What Is Genetic Architecture?

Overall importance of genetic variation to trait
variation (heritability, or h?)

The degree of genetic overlap (pleiotropy) with
other traits

An understanding of the properties of causal

variants (CVs) that underlie trait h:

m  Their number

The distribution of their effect sizes

The distribution of their allele freg’s (not just MAF)
Their mode of action (degree of non-additivity)
The relative importance of different annotations



Why care about genetic architecture?

m  Guides expectations (e.g., effect sizes & sample sizes
required)

m  Guides the design of future studies & investment (e.g.,
seguencing vs. imputation)

m  Provides insight into biological pathways relevant to traits
(e.g., genes expressed in fetal brain for SZ)

m  Helps with nosology and better trait definitions (e.g., high
r, between SZ and BPD)

m  Provides insight into evolutionary gquestions (e.g.,
purifying selection vs. neutral drift)

m Basic understanding (“Because It’s there” - George
Mallory)



Insight Into genetic architecture
using twin/family studies

For most of history of behavioral genetics, we could only get at genetic
architecture using similarity between twins/family members

Relatives are more similar than random pairs

Identical twins are more similar than fraternal twins
— ACE models: VA’ =2(CVmz - CVdz); VC’ = 2CVdz - CVmz
— ADE models: VA’ =4CVdz - CVmz; VD’ = 2CVmz - 4CVdz

Average meta-analysis* h? = .49, and 69% of twin studies support a
purely additive model

However, estimation of h? provides only a small part of what we want
to know about genetic architecture.

Moreover, models that use close relatives require strong assumptions
about the causes of similarity within relative pairs. To the degree these
assumptions are violated, estimates are systematically biased.

*Polderman et al, Nature Genetics, 2015



What are the effects of violations of
assumptions in twin studies?

a) Only genetic factors cause MZ twins to be more similar to each
other than DZ twins: VA and VD overestimated and VC
underestimated

b) Either VD or VC is zero: VA overestimated and VD & VC
underestimated

c) No epistasis: VD or VA overestimated and VVC underestimated

d) No assortative mating: VA and VD underestimated and VC
overestimated

e) No gene-environment interactions or correlations: AxC: VA
overestimated; AXE: VE overestimated; passive Cov(A,C): VC
overestimated



An alternative: using similarity at
SNPs to estimate h<g,,

h%g,p - €Xxtent to which SNP similarity (pihat) corresponds

to phenotypic similarity between “unrelated” individuals

Several advantages for insight into genetic architecture:

— Only captures h? from CVs in LD with SNPs used in the analysis. This allows
for estimates of allelic spectra (distribution of CV MAF)

— h%,, should be unbiased by environmental factors that increase close relative

similarity. As we continue to capture lower MAF SNPs through imputation or
sequencing, estimates of h%, ; approach full narrow-sense h?.

— Can estimate r, between low prevalence disorders that are impractical to
estimate using twins/family designs

— Estimating h%,, from binned SNPs allows for estimates of relative importance of
different SNP annotations.

— Certain approaches (e.g., Bayes-R) allow for estimates of # CVs and their effect
size distribution



Multiple approaches to
estimating h4g,,

east Squares Regression (Haseman-Elston)

Mixed effects models (GREML):

= Typical approach (GCTA assumptions)
« Alternative assumptions (LDAK)
« Multi-GRM approaches

LD-score regression
Bayesian approaches
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Goals today

Understand various ways to estimate h%g,,

Compare the performance of these procedures to estimate
h2

snp

Understand the factors that bias estimates of h=,

We focus on univariate estimates (VGg,, or h%;, ). In
general (exceptions noted), the same factors influence
bivariate estimates (COV, or ry,,).



LD



Linkage disequilibrium (LD)

m Statistical association (e.g., r?) between two SNPs

m Typically arises from a mutation that occurs on a
haplotype. It will co-segregate with nearby SNPs.
As It rises In frequency, so too will nearby SNPs.

m |t decays as a function of number of recombination
events that break the two SNPs apart, which is itself
a function of:
m Time (# generations) since the mutational event
m Distance (cM) between the two SNPs

m SNPs can only predict SNPs that are similar in MAF. Rare-
rare or common-common. Rare-common is not possible.



How LD arises & decays

Recombination Point
[ | | Initial
[_ | l : Generation

0 1 D ENIEENEN mEs

In!tia[
(] [H N Generation
= [ . [E0
[ FR—— Y
| | | .—ﬁ__l Generation 1
| | Q I N A1
100

Generations

[N BN SN
L0 W 71 17T

Generation 2

Decay of Linkage over successive generations

1000
Generations

| — OT. penereten

T )

& &
Linkage between two points/

Vs Population moves from Linkage Disequilibrium to Linkage

Equilibrium over time

Bush & Moore, PLoS Comp Bio, 2012



SNPs can tag other nearby SNPs...
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LD drops as a function of distance
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...and high LD possible only if the two

alleles are of similar frequencies.
Possible range of allele frequencies given LD (r?) between 2 SNPs
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Imputation



Observed Genotypes

Observed Genotypes

Study
Sample

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGOC
TGGGATCTCCCGACCTC CATGG
CGAGATCTCCCGACCTTGTGOC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGOC
CGAAGCTCTTTTCTTCTGTGC

HapMap
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CGAGATCTCCTTCTTCTGTGC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGOC
CGAAGCTCTTTTCTTCTGTGOC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGSG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC




Impute missing genotypes

Observed Genotypes

gjg_l

cgagAtctcccgAcctcAlt
cgaaGectcttttCtttcATtLt

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGZC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC




Imputation quality as function of AF
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pihat



IBD vs. IBS

m IBD - identity by descent — alleles descended from
common ancestor

m IBS - identity by state — alleles that look the same
but not necessarily from a common ancestor within
a given time frame (e.g., since the base population)

m Problem: from coalescent theory, ~ all IBS alleles
came from same mutation and are thus IBD (though
each IBS allele is IBD from different time in past).

m Reconciliation: IBD estimates should be designed
to estimate P(alleles at unobserved loci are IBS)*
*Powell et al., NRG, 2010



N

7 = E(IBD), usually genome-wide

m 77 among close relatives captures long stretches of
1dentical chromosomes, and estimate IBS at both
common and rare alleles. Traditionally with close
relatives, we know the expectation of this and use
this (without variance) for modeling.

m 7 among unrelateds (distant relatives) assumes base
population 1s the current sample, and thus its
expectation 1s 0. It 1s typically measured with SNPs,
and so only captures IBS at measured SNPs and
unmeasured SNPs in LD with measured SNPs. It
can go negative (less related than average).




7. = genome-wide mean correlation of SNP
values between a pair of individuals J,k
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Cor. of 7 across MAF/LD binned GRMs
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STRATIFICATION



Stratification

m Population subdivision (non-random mating)
creates allele frequency differences between
populations due to random genetic drift



Stratification

m Population subdivision (non-random mating)
creates allele frequency differences between
populations due to random genetic drift

m A principal components analysis (PCA) of n-by-n
matrix of pihats (called the GRM - genomic
relationship matrix) can pull out axes that
differentiate such subdivision (ancestry).

B Caucasian

First component



Stratification

m Population subdivision (non-random mating)
creates allele frequency differences between
populations due to random genetic drift

m A principal components analysis (PCA) of n-by-n
matrix of pihats (called the GRM - genomic
relationship matrix) can pull out axes that
differentiate such subdivision (ancestry).

m |f there are mean phenotypic differences between
ancestry groups (or differential sampling of
ancestries in cases vs. controls), stratification is a
potential confounder.

m Typically, control for this using first 5-20 PCs



H-E REGRESSION



Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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Regression estimates of h?
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GREML

nature |
genetics i

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard® &
Peter M Visscher!



GREML Model

yy=2Zi+e

Pl B
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Yx
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GREML Model

- ]Zﬁ : g\
.64 1.15 -58 -1.15| |, | |g
-258 | = |-58 1.15 .58 AT A
321| |.s8 -58 58| |*2| |
Yx design matrix for SNP effects = HS 83
Xy —2p, SNP residuals
J2p.(-p) effects

We aren’t interested in estimates of each u, because
such individual estimates are unreliable when m > n.
Instead, estimate the variance of u..




GREML Model

y,=2Zu+e
-.64 1.15 -58 -1.15| |, | |é
-258 | = |-58 1.15 .58 7 + y
3.21 -58 -58 58| 72| |2
Yx design matrix for SNP effects = HS €3
X; —2p SNP residuals
J2p,(-p) effects

We assume u ~ N(0,07°) and are iid
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and therefore Ji =



GREML Model

(we treat u as random and estimate 0'_5 and thus Oji )
var(y ,)=ZZ'c: + 1o

_ I 2 2
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var/covar matrix at measured SNPs. Each element = matrix
of y
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observed var/covar

REML find values of 6 & & that maximizes the likelihood of the
observed data. Intuitively, this makes the observed and implied

var-covar matrices be as similar as possible.
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Interpreting h? estimated from SNPs (h?

snp)
If close relatives included (e.g., sibs), h%.., = h? estimated

snp —

from a family-based method, because great influence of
extreme pihats. Interpret h%;,; as from these designs.

If use ‘unrelateds’ (e.g., pihat < .05):

m h? estimate 'uncontaminated' by shared environment and
non-additive genetic effects

m Does not rely on family/twin study assumptions

m Evidence for h%; to degree similarity at SNPs

corresponds to phenotypic similarity. Thus, h%,, =

proportion of V; due to CVs tagged by (in LD with)
SNPs used in the GRM.

m Typically, h%,, < h?. Itis the max r* possible from a PRS
using those SNPs.




Why h,, < h? (usually)

Because we only estimate genetic variance from CVs in
LD with the SNPs used in the analysis. Common CVs are
In high LD with array/imputed SNPs, but this is less the
case with rare CVs.

In particular:
—2
h2 = p2 MO
snp —2
MM

where
Fﬁw IS the average r? between CVs and SNPs

Fﬁm is the average r? between SNPs and SNPs



RUNNING GCTA



SNP QC

e Poor SNP calls can inflate SE and cause
downward bias in h%g

e Clean data for
— SNPs missing > ~.05
— HWE p < 10e-6
— MAF < ~.01

— Plate effects:

 Remove plates with extreme average inbreeding
coefficients or high average missingness



Individual QC

Remove individuals missing > ~.02

Remove close relatives (e.g., --grm-cutoff 0.05)

— Correlation between pi-hats and shared
environment can inflate h% j estimates

Control for stratification (usually 5 to 20 PCs)

— Different prevalence rates (or ascertainments)
between populations can show up as h?g,,

Control for plates and other technical artifacts

— Be careful if cases & controls are not randomly
placed on plates (can create upward bias in h%g )




GCTA command & input

COMMAND: gcta --bfile SNPs --make-

gcta ___— grm-bin —-out SNPs.rel05

--grm-bin <path>/SNPs.rel05

test.phen (no header line; columns are family ID, individual ID and phenotypes)

011 0101 0.98
012 0102 -0.76
--pheno <path>/test.phen 013 0103 -0 06

test.covar (no header line; columns are family ID, individual ID and discrete covariates)

--covar <path>/test.covar «—

01 0101 F Adult 0
02 0203 M Adult 0
03 0305 7 Adolescent 1

--gcovar <path>/test.qcovar

test.qgcovar (no header line; columns are family ID, individual ID and quantitative covariates)

01 0101 -0.024 0.012
02 0203 0.032 0.106
--reml --out SNPgrm.randomCV S



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE

V(G) 0.300098 0.275857
V(e) 1.730548 0.279257
Vp 2.030646 0.049529
V(G)/Vp  0.147785 0.135820
logL -2876.706

logLO -2877.338

LRT 1.264

Df 1

Pval 0.1305
N 3363



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE

V(G) 0.300098 0.275857

V(e) 1.730548 0.279257

Vp 2.030646 0.049529 h?

V(G)Vp  0.147785 0.135820 e

logL -2876.706 snp & SE

logLO 2877.338 _

LRT 1.264 95% CI:

Df 1 0.147-1.96*0.134 = -0.12
Pval 0.1305 0.147-1.96*0.134 = 0.41

N 3363



GCTA command & output

COMMAND:

gcta --grm-bin <path>/SNPs.rel05 --pheno <path>/pheno.txt --covar
<path>/cov.txt --reml --out SNPgrm.randomCV

OUTPUT: cat SNPgrm.randomCV.hsq

Source Variance SE

V(G) 0.300098 0.275857

V(e) 1.730548 0.279257

Vp 2.030646 0.049529

V(G)/Vp  0.147785 0.135820

logL -2876.706

logLO -2877.338 TYURT :

RT L 64 e lee!lhogd Ratio Test

Df 1 Testing if V(G) > 0

Pval 0.1305 -2*(-2877.338 - -2876.706) = 1.26

N 3363 y2test, 1 df



LD-score regression
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LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies
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How does LD shape association?

LD Score regression distinguishes confounding
from polygenicity in genome-wide association
studies

Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang,
Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson,
Mark J Daly, Alkes L Price & Benjamin M Neale
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How does LD shape association?

I Lonely SNPs [no LD]
LD blocks

*  (Causal variants
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Association

All markers correlated with a causal variant show association



How does LD shape association?
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*  (Causal variants

LD Score regression distinguishes confounding
from polygenicity in genome-wide association
studies

Brenda Budik-Sulll ary G Jian Y
Schizophrenia Working Group of the Psychiatric Genomica Consortium, Ni ick Patterscn,
Iy, Alkes L eal
Affiliations | Contributions | Cormesponding author
Nafure Genebs dot 038y,
ecatved 07 ch soapied ry 2015 shad on! ruary 20

*
—_

Association

Lonely SNPs only show association if they are causal



What happens under polygenicity?

Lonely SNPs [IIO LD] LD Score regression distinguishes confounding
from polygenicity in genome-wide association
LD blocks studies
Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang,

Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson,
Mark J Daly, Alkes L Price & Benjamin M Neale
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Assuming a random CV placement, we see SNPs with more LD friends showing more association

The more you tag, the more likely you are to tag a causal variant




Simulated polygenic architecture
Lambda = 1.30 LD score intercept = 1.02



What happens under stratification?

I Lonely SNPs [no LD]
LD blocks

*  (Causal variants
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Under pure drift we expect LD to have no relationship to differences in allele

frequencies between populations




UK controls versus Sweden controls
Lambda = 1.30 LD score intercept = 1.32
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LD Score regression

What is the E[x?] for variant j?
he N
M

where N=sample size, M=# of SNPs, a=inflation due to

confounding, h?; is heritability (total obs.) and |, is the

LD Score: . — 2
0=,

E[xf/]=1+Na+ l;
Tk

Thus, an estimator of heritability is:

B2 =2 p
N 1

Bulik-Sullivan et al. Nature Genetics 2015
Yang et al. EJHG 2011









Advantages of LD-score regression

It only requires GWAS summary statistics. It 1s therefore
fast, easy to use, and can be employed on very large
sample sizes.

Because it relies on LD-2 relationship, and because rare
SNPs have very low LD with untyped SNPs, it breaks
down when estimating SNPs with MAF < .01 (shown
below).

However, 1t should provide decent (~unbiased) estimates
COVsnp (T1,T2)

ofr =~ T

snp
JVGsnp (T1) *VGsnp (T2)



M

Heritability (liability scale)

Univariate heritability from
common variation

GGE = Generalized Epilepsy
SCZ = Schizophrenia
0oCD = Obsessive Compulsive Disorder
: Disease group AUT = Autism
Iﬁ %‘HFS TSY = Tourette’s Syndrome
ICH = Intracerebral Hemorrhage
BPD = Bipolar Disorder
MDD = Major Depressive Disorder
2 ANO = Anorexia Nervosa
MSC = Multiple Sclerosis
MWO = Migraine without Aura
MIG = Migraine
MWA = Migraine with Aura
1 EOS = Early Onset Stroke
AZD = Alzheimer’s Disease
ADD = Attention Deficit/Hyperactivity
EPI = Epilepsy (all)
ISS = [schemic Stroke
, NFE = Non-acquired focal epilepsy
' PKD = Parkinson’s Disease

GGE
SCZ
0CD
AUT
TSY
ICH
BPD
MDD
ANO
MSC
MW
MIG
MW
EOS
AZD
ADD
EPI
ISS
NFE
PKD
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Changing GREML assumptions by weighting 7

A 1 (x;;‘ _2P,;)(x,; _zp,-;)
= _25 j .
m 2p;‘(1_p;‘)

m A more general form of this formula is:

A 1

T = SW, Z Wi(xij —2p;) (X — 2p;) [2p;(1 — p;)]%)
m  Which reduces to the typical formulation above when:

W,=1vi=1.m & a=-1

m The choice of Wi and a are arbitrary, and depend on
Implicit assumptions about which types of SNPs tag CVs
& CV effect sizes. If we heavily weight a certain type of
SNP (e.g., those on even chromosomes), we assume such
SNPs better tag CVs.



Typical (GCTA) assumptions implicit in 7

R 1
ik = 2 W;

N Wity — 2p) Gea — 280 (201 — p)]°)

Assumptions Conseguences
SNPs have equal weight, even if they are poorly
Imputed and redundantly tag the same CV

W,=1Vi=1..m

Rarer SNPs (which tag rarer CVs) receive more
weight, ostensibly due to NS. This means the variance
explained per SNP is invariant across MAF:

G; = (X; — 2p;)[2p;(1 — p;)]*/
G;] = [2p;(1 — p)]*V[(X; — 2p;)]
i = [2p:(1 = p)]*2p;(1 = p;)

] = [2p;(1 —p)]**

a=—1

< <
QD
I ||

<
D
|



LDAK assumptions implicit in 7

1
i = 577 2. Wiy = 290 G = 20 (201~ 1)
Assumptions Consequences
W, = r,w, Where r; Is the imputation INFO score and w; Is the
. LD score. High LD SNPs receive less weight, and
w; = SESLD poorly imputed SNPs receive less weight.
Q4 = — 25 Rarer SNPs (which tag rarer CVs) receive less (vs.

GCTA) weight. This means the variance explained
per SNP increases with MAF:

ViG] = [2p;(1 — p)]***



Speed & Balding argued that
LDAK weights are superior

Common sense: Redundantly tagged CVs should not have
higher effect sizes. Poorly imputed SNPs must tag CVs
WOorse.

Model Fit: log-likelihood from LDAK models was
typically higher than log-likelihood from “GCTA” models

- Moreover, h%,, 25-43% higher than GCTA models



Problems with LDAK approach

Single GRM models depend heavily on assumptions and

CV MAF matching the SNP MAF distribution
Nothing about maximizing likelihoods ensures

unblasedness

LD and imputation r? are highly
positively related, but LDAK weights
them oppositely. This gives extreme
weight to a small number of unusual
(well imputed, low LD, high MAF)
SNPs

o
od

Imputed Variants
Chromosome 20

00 01 02 03 04 05

MAF




GREML-LDMS-I & -R

ANALYSIS 2018

Ittpssidolor g 10028,

Comparison of methods that use whole genome
data to estimate the heritability and genetic
architecture of complex traits

LDMS-I

Luke M. Evans ™, Rasool Tahmasbi ", Scott I. Vrieze®, Goncalo R. Abecasis’, Sayantan Das 3,
Steven Gazal %%, Douglas W. Bjelland’, Teresa R. de Candia', Haplotype Reference Consortiumé,
Michael E. Goddard™, Benjamin M. Neale "%, Jian Yang?, Peter M. Visscher® and

Matthew C. Keller'™
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Genetic variance estimation with imputed variants finds
negligible missing heritability for human height and body

mass index LDMS-R
Jian Yang!?24, Andrew Bakshi!, Zhihong Zhu!, Gibran Hemani'>?, Anna A E Vinkhuyzen', Sang Hong Lee!",

Matthew R Robinson', John R B Perry®, Ilja M Nolte®, Jana V van Vliet-Ostaptchouk®’, Harold Snieder®,
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Patrik K E Magnusson'?, Nancy L Pedersen', Erik Ingelsson'®!7, Nicole Soranzo'®!?, Matthew C Keller?®!,

Naomi R Wray!, Michael E Goddard??2? & Peter M Visscher!2:24



The LDMS Approach

Single-GRM maodels are highly sensitive to assumptions
about CV-SNP LD (e.g., that SNPs have same distribution
as CVs) and CV effect size-MAF relationships. We don’t
want our estimates of genetic architecture to depend on our
assumptions of genetic architecture.

Moreover, even if we were to guess at these relationships
perfectly for a trait, they are unlikely to hold across all
traits.

Akin to multiple regression, an alternative (LDMS) is to let
the data tell us by fitting multiple GRMs, each with SNPs
binned according to different MAF levels and LD levels

Estimates associated with each GRM are free to soak up
whatever variance is explained by those MAF/LD SNPs




LDMS justification

—2

~ Mo
m Recall that hZ%,, = h? ——
MM

m The range of MAF and range of LD will be smaller within
a particular MAF/LD bin. Thus, for a given MAF/LD bin k

of SNPs (M,) and CVs (Q,),

—2
"M Qx
—2
"M My

-1

and thus

hsn'p,k - hk



LDMS-R vs. LDMS-I

LDMS-R: Create 20 GRMs across 5 MAF bins (< .001,
.001-.01, .05-.1, .1-.25,.25-.5) and 4 quartiles of LD scores,
where SNPs take the average LD of SNPs in the
surrounding ~ 200kb region.

However, SNPs with individually low LD that exist in
regions of high LD explain more variation azieta. nature cenetics, 2017)

LDMS-I: exactly like LDMS-R except use each individual
SNP’s LD score for binning

Because SEs tend to be ~2.5x larger than single-GRM
estimates, both require large sample sizes (e.g., N > 30k)
and therefore large amounts of RAM (e.g., >100 Gb)



RUNNING LDMS-



Create LD quartiles
GCTA LD Comm% test.bed, test.bim, test.fam

gcta --bfile <path>/test SNP chr bp freq mean_rsq snp_num max_rsq ldscore_SNP ldscore_region
--Id-Score-re ion 200 rs4475691 1 836671 0.197698 0.000588093 999 0.216874 1.5875 2.75538

g/ rs28705211 1 890368 0.278112 0.000573876 999 0.216874 1.5733 2.75538
--Qut LDtXt rs9777703 1 918699 0.0301614 0.00131291 999 0.854464 2.31159 2.75538

Create LD quartiles in R:

LD <- read.table(“LD.txt”,header=T)

guants <- quantile(LD$ldscore SNP)

LD1 <- LD$SNP[LD$ldscore  SNP <= quants[2]]
write.table(LD1,’snp_groupl.txt”,row.names=F,col.names=F,quote=F)
<etc...>

Create GRMs in GCTA:

gcta --bfile <path>/test
--extract snps_groupl.txt
--make-grm-bin

--out GRM.1




Run LDMS-| using GCTA

Text file

COMMAND: <path>/GRM.1

gcta <path>/GRM.2
--mgrm-bin <path>/multi_ GRMs.txt /

<path>/GRM.last

--pheno <path>/test.phen
--covar <path>/test.covar
--gcovar <path>/test.qcovar
--reml --out Multi.SNPgrm

— AS before

_/

--thread-num 20 \

You can use multiple cores;
make this as many cores as you
can spare



LDMS-I Output (3 GRM example)

TYPE: cat mgrm.randomCV.hsq

Source Variance SE

V(G1) 0.303900 0.184182

V(G2) 0.127654 0.309142

V(G3) 0.653199 0.328909

V(e) 0.926493 0.435653

Vp 2.011246 0.049641

V(G1)/Vp 0.151100 0.091277

V(G2)/Vp 0.063470 FD.153765 — —

V(G3)/Vp 0.324773 0.164408 hZSNP 015+OO6+032 05391
logL -2872.894

N 3363



GREML vs. LDAK vs. LDMS-I



‘ nre i ANALYSIS
Irttpa*tedorg 10V0SE,

Comparison of methods that use whole genome
data to estimate the heritability and genetic
architecture of complex traits

Luke M. Evans '™, Rasool Tahmasbi ", Scott |. Vrieze®, Goncalo R. Abecasis’, Sayantan Das ", LU ke Evan S
Steven Gazal ©*%, Douglas W. Bjelland", Teresa R. de Candia’, Haplotype Reference Consortium?,

Michael E. Goddard™, Benjamin M. Neale 0% Jian Yang®, Peter M. Visscher® and
Matthew C. Keller'™*

*\We hope It’s useful as a guide for best practices and proper
interpretation of A2

*\We simulated 16 genetic architectures, 3 levels of
stratification, and 3 SNP types (array, imputed, WGS) in order

to compare 4%, across 12 estimation methods (1728 different
combos)

eHere | highlight just a few of what | think are the most
Important points



Overview of Simulation Approach

m Genotypes from real WGS data (n=8k). Choose 1K
rare (MAF < .0025) or common (MAF > .05) CVs.

m Pull out SNPs on UKB array & impute

m Vary 2 CV effect size dimensions (A,=u;[2pq]*¥?):
. A-LD (via u)
- A-MAF (via 0)

m Compare /2., to true h? (=.50) across 3 methods
on imputed data

m Repeat this 100 times for different sets of CVs;
look at mean (to get bias) and SD (to get SE) 7%



Simulation of phenotypes
m CV effect size = A= u;[2pq]*>

A-LD relationship
u=N@1)  or  u~=NOw)

none (0) negative (-)
— .
LL lzis Typi?éﬁ?gir?;?np " | V(Gi) decreases w/ LD
<| < |negative (-)
> uci Typical LDAK assump.
=2 R V(Gi) increases w/ MAF | V(Gi) increases w/ MAF
3 weak (~0) V(Gi) decreases w/ LD

m Breeding values = 4; = Z Aixij
i

m Phenotype values = P; = 4; + E;



3 Estimation Methods Compared

m GREML-SC: predictor is a single GRM (aka, “GCTA
approach”). GRM built as usual from all imputed SNPs
with MAC > 5 & imputation r? > .3

m LDAK: predictor is a single GRM from imputed SNPs and
weighted by LD and imputation r2.

m GREML-LDMS-I: predictors are k = 8 GRMs created by
binning imputed SNPs into 2 individual LD by 4 MAF
categories. Within each bin, GRMs built as usual. 7%, =

Z(EZSN P_k)




GREML-SC results

CV MAF > .05
0 _
=
n [ -
&L
N I
CVs: |
LD-A 0 - 0 -
MAF-A - - ~0 ~0
GCTA LDAK

assumps. assumps.



GREML-SC results

CVMAF>.05
Mo = Mvm
r':"?__ _
o
5 3 -
<'Q .
o _
CVs: |
LD-A 0 - 0 -
MAFA - - ~0 ~0

GCTA LDAK
assumps. assumps.



GREML-SC results

CVMAF>.05
Mo < mm
r':"?__ _
o
5 3 -
<'Q .
o _
CVs: |
LD-A 0 - 0 -
MAFA - - ~0 ~0

GCTA LDAK
assumps. assumps.



GREML-SC results

CV MAF > .05 CV MAF < .0025
r'-g _
>
n [ -
&L
MQ
Vo, g | I
CVs: | l .-
LD-A
MAF-A - - ~O ~O - - ~O ~O
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



GREML-SC results

CV MAF > .05 CV MAF < .0025
E—_ _
n h2sne = 02 (FPyo/Tvm)
5 3 -
<VQ .
CVs: ) I
CVs: _ l . -
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~0 -0 - - ~0 -0

GCTA L DAK GCTA LDAK
assumps. assumps. assumps. assumps.



L DAK results

CV MAF > .05
o _
al
5 Q-
=
0
CVs: |
LD-A 0 - 0 -
MAF-L - - ~0 -0
GCTA LDAK

assumps. assumps.



L DAK results

CV MAF > .05 .
upweights low LD
g SNPs but this is
N partially offset by
Z 9. downwelighting
R poorly imputed ones
3 -
Cvs: |
LD-A 0 - 0 -
MAF-A - - ~0 -0

GCTA LDAK
assumps. assumps.



L DAK results

CV MAF > .05 CV MAF < .0025
,{'J__ _
al
5 Q-
Ny
”N'f _
cvs: I |
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~0 -0 - - ~0 -~0
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



L DAK results

CV MAF > .05 CV MAF <.0025
r'{’_. _
ol
5 Q-
= Again,
& - Mo < Mmm
cvs: mm o R
LD-A 0 - 0 - 0 - 0 -
MAF-A - - ~0 -0 - - ~0 -0
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



GREML-LDMS-I results

CV MAEF > .05
IE?__ _
ol
Z O
N W
3
'ga_ _
CVs:
LD-A 0 - 0 =
MAF-A - - ~0 -0
GCTA LDAK

assumps. assumps.



75
|

h SNP
50
|

CVs:
LD-A
MAF-A

GREML-LDMS-I results

CV MAF > .05 CV MAF < .0025

0o - 0 - 0 - 0 -

- - ~0 -~0 - - ~0 -0
GCTA LDAK GCTA LDAK

assumps. assumps. assumps. assumps.



h SNP
50
|

CVs:
LD-A
MAF-A

GREML-LDMS-I results

CV MAF > .05 CV MAF <.0025

Within a given MAF/LD bin, r4y, = réyy
Thus, I’ZZSNP = h2 (rzMQ/rZMM) = h?

0 - 0 - 0 - 0 -

. - ~0 ~0 . - ~0 ~0

GCTA L DAK GCTA LDAK

assumps. assumps. assumps. assumps.



Absolute Bias Across 4 Methods and
hundreds of genetic architectures

0.5 —

Imputed varants

04 —

0.3 —

0.2 —

0.1

0.0 —




Regarding LD-Score regression

m LD-score regression is robust to stratification and
sample overlap. However:

m it cannot estimate h? due to rare CVs, even when
using imputed/WGS data

m it IS sensitive to assumptions about LD-A

m should provide a lower-bound of A2, from other
methods

m SO long as genetic covariance is affected in the
same way as genetic variances, estimates of genetic
correlations should be OK.



Summary

m With datasets imputed to large WGS reference panels, /%
can estimate full h2. It’s important that we have unbiased
estimators to know the true h? and for comparison to
twin/family estimates (o/w things will get really
confusing).

m Single-GRM approaches (incl. GREML-SC (“GCTA”) and
LDAK) are extremely sensitive to CV LD being similar to
SNP LD across genome.

m This is mostly influence by CV vs. SNP MAF, and also by
assumptions of LD-A relationship. MAF-A less so.

m Binning SNPs by LD & MAF provides ~ unbiased
estimates for the CVs tagged by SNPs used in analysis.

m Even on well-imputed data, you’ll still get an underestimate
due to extremely rare variants



REAL TRAITS



LDMS-I on UKB phenotypes
Imputed

0 Fluid Intelligence

x!lﬂi J HI L;E, 1 Neuroticism

A A N, A 5 ) e 9
> (:-"“)C?j -\DQQ QMR‘Q Q«QD A o 00‘36
Oy . 8) - '
@Qﬂﬁ o of o 5 QF S % J s
Q 0\'. \vgflf L N
.

LD bin & MAF Range



STRATIFICATION
& LONG-RANGE LD



Chance allele frequency differences b/w populations can
Induce long-range LD in stratified samples

Population 1 Population 2
A a A a
B D4 .36 9 B .03 27 3
b .06 .04 A1 b .07 .63 v
.6 4 A 9

r2 = (Pap — PaPB)* -0 r2 = (Pap — PaPB)*
PaPaPEPp PaPaPEPb

=0



Chance allele frequency differences b/w populations can
Induce long-range LD in stratified samples

Population 1
A a
B 54 .36
b .06 .04
.6 4

r2 — (Pas — PaPs)* _

PaPaPBPb

Stratified Population

A a
285 | .315
065 | .335
.35 .65

Population 2
A a
.03 27 3
.07 .63 v
1 9
2 _ (Pas — Papp)°* 0
PaPaP5Pb
.6
2 2 _ (Pap — Papp)° - 10

PaPaPBDPp



However, such “stratification-LD” is typically
very small for pairs of common SNPs

Population 1
A a
B 54 .36
b .06 .04
.6 4

r2 — (Pap — PaPB)*
PaPaPBPb

=0

Stratified Population

A a
490 | .360
085 | .065
D75 425

Population 2
A a
44 | .36 8
11 | .09 2
55 .45
2 _ (Pas — Papp)°* 0
PaPaPBPb
85
15 2= Pan PaPo) - _ 500

PaPaPBDPp



But higher b/w rare (often ~ private) SNPs
and common ancestry-informative SNPs

Population 1
A a
.003 .897
.00 .099
.003 997

r2 — (Pap — PaPB)*
PaPaPBPb

=0

Stratified Population

A a
021 | .829
005 | .145
027 973

Population 2
A a
.04 .76 .8
.01 19 2
.05 .95
2 _ (Pas — Papp)°* 0
PaPaP5Pb
.85
15 2 _ (Pap — Papp)° — 0004

PaPaPBDPp



Effects of stratification on r2g,,/r%,,,

* In general, stratification inflates long-range r?
between SNPs. However, within a given MAF bin, the
ratio of rég/r#yy is ~ 1 because SNP-SNP & SNP-CV

LDs are inflated similarly.




Effects of stratification on r2g,,/r%,,,

* In general, stratification inflates long-range r?
between SNPs. However, within a given MAF bin, the
ratio of rég/r#yy is ~ 1 because SNP-SNP & SNP-CV

LDs are inflated similarly.

 However, across CVs and SNPs of different MAF,
stratification induces differences in re5, & r4y,, We

observed:

— For rare CVs, régy/ryw > 1. Rare (ancestry specific) CVs are tagged
by every common SNP that differs in allele frequency across
ancestry (note ré,/r4y,y < 1 in unstratified samples).

— For very common CVs, r%,,/r, ~ 1. Very common CVs tend to
have smaller MAF differences, and therefore less LD with common
SNPs than typical between SNPs (note r4/r4,, > 1 in unstratified
samples).




This led to an opposite pattern of bias In
stratified (" structured™) samples when using
single GRM GREML

Single GRM using WGS

o
~ | e Structured Sample
. * Unstructured Sample
=]
3 7 A
2
8o | ®
8° A
P LGttt ©® -
e
o
w
? A\
e
g N
=z o
o
2

common very rare randomly drawn
Causal Variant Minor Allele Frequency



Which once again was corrected by
using LDMS GREML

Single GRM using WGS MAF-stratified GRMs using WGS

1.0
|
1.0

e Structured Sample e Structured Sample
e Unstructured Sample e Unstructured Sample

0.8
0.8

0.6
|
©

0.6

0.4

0.4
B

0.2
l

Narrow-sense heriability (h2)
®
I
|
I
I
|
1
I
I
|
1
I
1
|
I
I
1
1
I
|
|
I
1
1
I
I
|
1
|
I
I
|
I
Narrow-sense heriability (h2)
0.2
|
®
I
|
I
1
I
I
|
1
I
1
I
1
1
I
I
1
1
I
I
1
|
I
I
|
|

0.0
|
0.0

common very rare randomly drawn common very rare randomly drawn
Causal Variant Minor Allele Frequency Causal Variant Minor Allele Frequency



ASSORTATIVE MATING



Positive primary phenotypic

assortative mating (AM)

AM: Assortment between mates leading to a correlation

between phenotypic (and hence genetic) scores. Often
conceptualized as mate choice based on similarity.

Induces long-range (across chromosome) “directional”
LD (8) b/w CVs

m o =covariance among CV effects; under positive AM,
E[6]> O; allelic effects in the same direction.

Directional LD increases true Vs & h? in the population.

m This occurs for same reason the variance of a sum of
positively correlated X; > variance of sum of independent X;

m  For polygenic traits, the vast majority (>99%) of this increase
IS due to o between different CVs, not to 6 within CVs
(homozygosity)



AM effects on pihat

Assortment has ~ no influence on 7
Recall that E[Z;Z, |7, ] = h?7;;

However, this 1s much different than the reverse
conditional™*: .. _rh* 1
E|ftx|Z;Z, | = —<—

where r 1s the mate correlation and m i1s the # CVs

This is because 6 between CVs. the major factor
influencing h?, plays no role in 7 (or means in general)

1
My = E 'cor(xi}-,xik)
L

m

*Robinson et al., Nature Human Behavior, 2017
Yengo et al., BioarXiv, 2018



However, AM does bias h=, estimates

AM typically leads to upward bias in estimates of
equilibrium h2g,,

Occurs because AM creates positive covariances between
CV:s and these are correctly reflected in phenotypic

covariances between individuals (product of means) but
poorly reflected in pihat matrix (mean of products).

Thus, variance of pihats is too small. Underestimated
variance in a predictor leads to overestimates of the
coefficients associated with that predictor.

We derived this bias algebraically in HE regression
estimates and confirmed it in simulation.

REML also upwardly biased, but bias depends on ratio N/m.




2
Parameter h=g,

m  Define parameter h%,: proportion of phenotypic variance
tagged by SNPs, accounting for their inter-correlations

m  Equilibrium h?;,: R? from linear model Z ~ X, + X, +..X,
for all m SNPs fit simultaneously as n —

m The parameter depends on how well CVs are tagged by
SNPs (e.g., SNP density). Thus, it depends on the SNP
chip and the population it is estimated in.



HE regression estimate of h4g,
E[ZZ ]=COV(Z,Z))
E[ZZ\7,]= B, + B,

: V(%) P

, _COVZZ,.7) o



. . ,
HE regression estimate of h=g,
E[ZZ.]=COV(Z,Z))

E(ZZ,\7,]1= B, + B,

=2 4+2M0
_— M
, _COVZZ.%) -
1 V(ﬁ:u) Snp

2
—_— E1+(2M¢5)



We don’t predict HE estimates to change as a function of
m or N. GREML estimates are clearly a function of N/m,
which occurs because when N>>m, the effects of each
SNP are separable.

mean & 95% Cls of VA estimates (red or blue) or observed VA (green) by N/m. r{spouse)=4, VAtime 0 =1

—_ « HEWVAests
——- Algebraic Expected HE VA ests
s  GREML VA est's (% missing)
= «  Empirical Eq. VA
- —- Expected Eq. VA
| I —-- Time 0VA
@_ I e
T (0
()
=t {0
—— e S — S S — S S— -
{0
i
(0 -+
o 1
e [ (',j) """"""""""""""""" I -t
(0 (0
120
04 A1 33 1 3 9 27 81

Mim



SNP heritability

1.0

02 03 04 05 06 07 08 059

Predicted h?

snp

SNPs tag 50% of true VA

- ©= HE regression hsnp P .0
-e- Equilibrium hZ _ (total h” = .80) e
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SNP heritability

1.0

0.2 03 04 05 06 07 08 0.9

Predicted h?

snp PlASES assuming
SNPs tag 50% of true VA

A2
- ©- HE regression hsnp L
-e- Equilibrium hZ _ (total h* = .80) e
”~
2 ”
—©— HE regression ﬁsnp e 52
—o— Equilibrium hZ | (total h® = .50) _.o”
-
..-*"'ff }20 ____.-"o'.-_—
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° o/ 29
/—-
s —0—
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[ I I I |
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Potential degree of over-
estimation for various traits

Trait

Extraversion
Neuroticism
Height

IQ

Political Pref.

r(spouse)

.01
.08
.20
.35
48

2
h ETFD
from

literature

23
24
.70
.62
.26

h2

snp
from

literature

15
.16
45
.35
18

corrected

h%np

15 0
155 .03
.39 15
.28 25

15 .20

% Over-
estimated



Simulations

Rasool Tahmashbi

Simulated populations under AM using
GeneEvolve (Tahmasbi & Keller, 2016).

CVs: 1000

Heritability: 0.5

Relative pruning: >.05

Spousal phenotypic correlation: .4
Took mean of 100 iterations



Heritability estimate

GeneEvolve Simulation Results

- Time 0 h?
= Equilibrium h?
Empirical Equilibrium h?

1.0

0.8
I

0.6
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HE vs. GREML estimates

* For most realistic situations, m>>N, and
thus GREML and HE estimates are
similar: both over-estimate equilibrium
hzsnp

 We can vary N (holding m constant) to see
If AM Is biasing estimates Iin real data



HE (blue) vs. REML (red) h=g
estimates of systolic BP - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness > .05; Covariates: sex, age, age-squared, PCs 1-4, townsend deprivation
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HE (blue) vs. REML (red) h4g,,
estimates of height - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness = .05; Covariates: sex, age, age-squared, PCs 1-4
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Heritability

HE (blue) vs. REML (red) VA
estimates of fluid 1Q - UK Biobank

Error bars: 1 SEMs; GRM pruned for relatedness > .05; Covariates: sex, age, age—-squared, PCs 1-4, townsend deprivation
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Summary — bias due to AM

m  AM creates upward biases in HE and REML
h?\p €Stimates

m \We see evidence for this in UK Biobank data for
height but not for fluid 1Q

m Natural selection creates negative LD among
CVs. The combined effect of AM and NS could
cancel each other out.

m  Remaining issues:

m Unsure how to account for the bias. LDMS
GREML does not help.

m Need to understand the effects of NS on h%




Big picture: Using SNPs to estimate h?

m There has been a great deal of excitement about
using SNPs to estimate h?

m Large sequence reference panels (TopMed) allow
SNPs to be imputed down to MAF ~ .0001.
m h%,, will approach h?

m Also allows investigation of allelic spectra, and importance
of biological/evolutionary annotations

m By understanding true h?, can begin understanding
Importance of familial environmental factors

m However, it Is crucial to understand the factors that
can bias these estimates

m LDMS accounts for biases due to MAF & stratification
m But not for biases caused by AM (and probably NS)
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Table 1| Summary of commonly applied methods and a description of findings from simulations

Method Description Major assumptions Simulation findings regarding R;NP Computational issues
GREML-SC® Often called the GCTA (i) Genetic similarity is Biased to the degree that the Simple model tractable

approach. Originally applied uncorrelated with environmental average LD among SNPs is different  with large samples

to common array SNPs only. similarity; (ii) an infinitesimal from the average LD between SNPs  (>100,000).

Estimates ﬁ,SNP’ the amount of model; (iii) SNP effects and CVs. This occurs in stratified

h? caused by CVs tagged by are normally distributed, samples and when MAF and LD

SNPs used to create the GRM., independent of LD, and inversely distributions of SNPs do not match

proportionate to MAF (a=-1). those of CVs.

GREML-MS" The first multicomponent Requires that the same Biased when CVs have generally Run times and memory

GREML-LDMS-R’

GREML-LDMS-I

LDAK-SC'50

LDAK-MS"

Threshold
GRMs**

LD score
regression'”

approach, usually applied
by binning SNPs according
to their MAF, annotation, or
physical regions to explore
genetic architecture.

A multicomponent approach
that bins imputed SNPs by
their MAF and regional LD.

A multicomponent approach
introduced here that bins
imputed SNPs by their MAF
and individual LD.

Intreduced to account for
redundant tagging of CVs
by common SNPs. Recently
modified to incorporate
error due to imputation and
to alter the MAF effect-size
relationship.

A multicomponent extension
of LDAK-SC that bins SNPs
by MAF.

A multicomponent approach
with two GRMs: the normal
(unthresholded) GRM built
from all SNPs and a second
GRM with entries set to O if
below a threshold. Conducted
in samples that include close
relatives.

Uses the slope from y? (from
GWAS) regressed on SNPs’ LD
scores to estimate the h? due to
CVs in LD with common SNPs.

assumptions of GREML-SC hold
within each GRM.

Same as GREML-MS.

Same as GREML-MS,

Same as GREML-SC, except that
allelic effects are a function of
LD. Extended to assume that
effects are also a function of
imputation quality and weakly
inversely proportionate to MAF
(x=-0.25).

Requires that the same
assumptions of LDAK-SC hold
within each GRM.

Same as GREML-SC for the
unthresholded GRM. Assumes
no shared environmental

influences among close relatives.

Infinitesimal model with allelic
effects normally distributed.

higher or lower levels of LD than
the SNPs used to make the GRM.
Relatively large standard errors.

Use of regional LD scores can lead
to biases when CVs have different
LD on average compared to
surrounding SNPs. Relatively large
standard errors.

Appears to be the least biased
approach, even when traits have
complex genetic architectures.
Relatively large standard errors.

Can correct for the overestimation
observed in GREML-SC from
redundant tagging of CVs, but
otherwise about as biased as
GREML-SC when assumptions are
unmet, although the biases are
sometimes in different directions.

Less biased on average than
LDAK-SC, but more biased than
GREML-LDMS-I or -R). Relatively
large standard errors.

Estimates associated with
unthresholded GRM similar to
those of GREML-SC. When used
in samples that include close

relatives, the second GRM captures

pedigree-associated variation but
can be upwardly biased by shared
environmental influences.

Largely robust to confounding
due to stratification and shared

environmental influences. Estimates

h? due to common CVs only, even

when used on imputed or WGS data.
Underestimates h? if the trait is not

highly polygenic.

requirements higher
than GREML-SC and
increase as a function of
the number of variance
components estimated.

Same as GREML-MS.

Same as GREML-MS,

Same as GREML-SC.

Same as GREML-MS.

See GREML-SC.

The most computationally
efficient method of those
compared and tractable
for very large datasets.
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