The Influence of Early-life Shocks and Genetic Diversity on Long-term Economic Outcomes: Evidence from the Great Depression

Valentina Duque, University of Sydney (valentina.duque@Sydney.edu.au) | Lauren Schmitz, University of Michigan (Ischmitz@umich.edu)

Research Question

Does the impact of early-life shocks on long-term socioeconomic attainment vary by genetic predisposition?

Motivation

- The prenatal environment has been shown to affect socioeconomic success (i.e., fetal origins hypothesis) (Barker, 1990; Almond et al., 2017)
- Not much is known about 1) the effects of early-life conditions on later life well-being; and 2) whether genetic diversity moderates adverse early-life conditions.

Project Overview

- Investigate long-term impact of early-life exposure to employment shocks from the Great Depression
- Exploit the state- and year-level variation in economic conditions during the 1930s
- Link state-level data on employment to 1) genotype data, and 2) longitudinal panel data on late-life economic outcomes for birth cohorts born between 1929 and 1940

Data, Sample, & Outcome Measure

Data

- Health and Retirement Study (HRS): economic & genotype data
- Wallis (1989): Data on manufacturing and nonmanufacturing employment at the state level \rightarrow link to HRS by year and state of birth
- **Polygenic score:** Educational attainment (Okbay et al., 2017)

Sample

- European ancestry individuals born between 1930 and 1940 who are between the ages of 50 and 65 in the HRS
- Total person-year observations: Men: N=7,150; Women: N=8,707

Main Outcome: Economic Well-being Index

Take average across three components:

- 1. Education (1=GED/HS degree; 0=no degree)
- 2. Standardized household income (\$2010s)
- 3. Standardized household wealth (\$2010s)

Employment index by state:1929-1940 (1929 = 100)

Empirical G x E Model

Differences-in-differences G x E specification

 $Y_{isret} = \delta EMPLOYMENT_{st} + \gamma EMPLOYMENT_{st} + \Omega EMPLOYMENT_{st} * PGS_i$ $+\beta PGS_i + Xi'\beta + \theta_s + \eta_c + \lambda_t + u(r*c) + \varepsilon_{isrct}$

- Where Y is the outcome of individual *i* born in state s in region r in year c and observed in the HRS in year t
- EMPLOYMENT and EMPLOYMENT²: linear and quadratic terms of the aggregate employment index PGS_i: educational attainment polygenic score for individual i
- X_i : individual characteristics including sex, age, age², mother's and father's education, first 10 PCs of genetic data, and
- PCs interacted with the employment index θ_s and η_c : state and year of birth fixed effects; λ_t : year of HRS interview fixed effects; u_{r^*c} : region of birth*year of birth
- fixed effects; ε_{isrct} : random error term clustered at the state of birth level All models are estimated using the HRS sample weights

Results: Main Effects

Percent change in economic outcomes after age 50 from a one unit decrease in the state employment index in early life

calculations from the Health and Retirement Study using state employment data from Wallis (1989) ***p < .01; **p < .05; *p < .10

Considerable variation in employment across states during the **Great Depression** and New Deal.

Source: Wallis (1989)

Economic Well-being Index		
Employment Index	0.048^{***}	0.014
	[0.012]	[0.018]
Employment Index ²	-0.00023***	-0.00007
	[0.00006]	[0.00009]
PGS	0.044 * * *	0.063***
	[0.014]	[0.011]
Employment Index		
×PGS	-0.0027***	-0.0002
	[0.0009]	[0.0008]
N	7,150	8,707
R-squared	0.24	0.24

Significant negative G x E in men \rightarrow Degree of substitutability between the environment and the PGS.

Examine health outcomes linked to prenatal maternal stress and economic deprivation

Funding: Marshall Weinberg Endowment, University of Michigan (Duque & Schmitz); NIA pilot grant to the Michigan Center for the Demography of Aging [P30 AG012846] (Schmitz); NIA K99 award [K99 AG056599] (Schmitz). Analysis in the HRS is covered by University of Michigan IRB approval HUM00122253.

Results: G x E

Next Steps

Cognition, depression, and anxiety

Investigate potential mechanisms using historical data:

Access to adequate nutrition for pregnant mothers Data from Census of Agriculture (1924-1939) \rightarrow Access to eggs (source of iodine and folate), vegetables, meat, grains

2. Increases in poor health behaviors or worsening health conditions Data on infant/adult mortality & stillbirths from the CDC (1929-1940)

3. Childhood SES and maternal investment (self-reported HRS data)

Acknowledgements